Convert MATLAB use of Probability Density Function (PDF) to Python

4 views (last 30 days)
Hi All
After asking in StackOverflow question without getting any answer I'm trying my luck here...
I'm working to convert below MATLAB code to Python:
data = [ 44374 44034 44150 44142 44332 43986 44423 44346 44199 44129 44173 43981 44152 43797 44167 43944 44069 44327 44083 44473 44530 44361 44067 44154 44212 44537 44158 44428 43911 44397];
RMS = sqrt( data );
MA = movmean( RMS , 15 );
x = RMS - MA;
y = linspace( -10 , 10 , 21 );
f_x = pdf( x , y );
So far I have this Python code:
from decimal import *
import numpy as np
from scipy.stats import gaussian_kde
from numpy.lib.stride_tricks import sliding_window_view
def movmean_edge_cases(arr, window_size):
# adding NaN for edges
padding = (window_size - 1) // 2
arr = np.pad(arr, (padding, padding), 'constant')
# convert zeros to NaN
arr[arr == 0] = np.nan
sliding_windows = sliding_window_view(arr, window_shape=window_size)
left_edge = np.nanmean(sliding_windows[:padding], axis=1)
right_edge = np.nanmean(sliding_windows[-padding:], axis=1)
return left_edge, right_edge
def movmean(arr, window_size):
# Create a windowed filter with equal weights
weights = np.ones(window_size) / window_size
# Compute the convolution between the signal and the filter
mean_values = np.convolve(arr, weights, mode='valid')
# Compute the edge values
left_edge, right_edge = movmean_edge_cases(arr, window_size)
# add edge values to the original list
mean_values = np.insert(mean_values, 0, left_edge)
mean_values = np.append(mean_values, right_edge)
return mean_values
data = [44374, 44034, 44150, 44142, 44332, 43986, 44423, 44346, 44199, 44129, 44173, 43981, 44152, 43797, 44167, 43944, 44069, 44327, 44083, 44473, 44530, 44361, 44067, 44154, 44212, 44537, 44158, 44428, 43911, 44397]
getcontext().prec = 18 # Change the precision
RMS = [Decimal(x).sqrt() for x in data]
RMS = [float(x) for x in RMS]
RMS = np.array(RMS)
MA = movmean(RMS, 15)
x = np.subtract(RMS, MA)
y = np.linspace(-10, 10, 21)
kde = gaussian_kde(x)
f_x = kde.pdf(y)
I have implemented the movmean function to be the same as MATLAB. Comparing both code I have ensure that x values and y values are the same for both MATLAB and Python.
Unfortunately the results after running the pdf Probability density function are not equal...
Results in MATLAB:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0666666666666667, 0.800000000000000, 0.133333333333333, 0, 0, 0, 0, 0, 0, 0, 0, 0
Results in Python:
0, 0, 0, 0, 0, 0, 0, 0, 0.0000005849, 0.1135087105, 0.6936653409, 0.0836530196, 0.0000000072, 0, 0, 0, 0, 0, 0, 0, 0
I tried various combinations of bw_methods in gaussian_kde function without luck.
Thank you!

Answers (1)

Askic V
Askic V on 13 Apr 2023
I have made a quick test using Matlab's built in function pdf and Python's stats.norm.pdf
x = [-2 -1 0 1 2];
mu = 1;
sigma = 5;
y = pdf('Normal',x,mu,sigma);
vpa(y,7)
ans = 
The following is the Python implementation:
from scipy import stats
import numpy as np
x = np.array([-2, -1, 0, 1, 2])
mu = 1
sigma = 5
pdf_var = stats.norm.pdf(x, loc=mu, scale=sigma)
print(pdf_var)
And Python returns the following:
[0.06664492 0.07365403 0.07820854 0.07978846 0.07820854]
  3 Comments
Askic V
Askic V on 13 Apr 2023
Trying to execute the code in this online version (2023a) gives and error:
data = [ 44374 44034 44150 44142 44332 43986 44423 44346 44199 44129 44173 43981 44152 43797 44167 43944 44069 44327 44083 44473 44530 44361 44067 44154 44212 44537 44158 44428 43911 44397];
RMS = sqrt( data );
MA = movmean( RMS , 15 );
x = RMS - MA;
y = linspace( -10 , 10 , 21 );
f_x = pdf( x , y );
Error using pdf
Requires the first input to be the name of a distribution.
David Recanati
David Recanati on 13 Apr 2023
Edited: David Recanati on 13 Apr 2023
I'm using Release R2017b sorry for not mentioned it
You can see this option here: https://www.mathworks.com/help/stats/prob.normaldistribution.pdf.html#:~:text=y%20%3D%20pdf(pd%2Cx)%20returns%20the%20pdf%20of%20the%20probability%20distribution%20object%20pd%2C%20evaluated%20at%20the%20values%20in%20x.

Sign in to comment.

Products


Release

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!