finding peak points while signal processing

4 views (last 30 days)
clear
% Define the mass, damping, and stiffness matrices
load C K
load M.mat
% Define the input force as a sinusoidal function of frequency w in Hz
f = linspace(0, 40, 100); % linearly spaced frequency vector in Hz
w = 2*pi*f; % angular frequency vector in rad/s
F = @(t) [sin(2*pi*f(1)*t); zeros(3, 1)];
% Define the initial conditions
x0 = zeros(4, 1);
v0 = zeros(4, 1);
y0 = [x0; v0];
ind = 100;
% Define the time span
tspan = [0 20];
% Preallocate arrays to store the magnitude and phase of the response
mag = zeros(size(w));
phase = zeros(size(w));
X = zeros(length(w), 4);
% Loop over the frequency vector and compute the response at each frequency
for i = 1:length(w)
% Define the input force at the current frequency
F = @(t) [sin(w(i)*t); zeros(3, 1)];
% Solve the differential equation to obtain the steady-state response
[~, y] = ode45(@(t, y) vibration_equation(t, y, M, C, K, F), tspan, y0);
x = y(end, 1:4)';
% Compute the magnitude, phase, and displacement of the response at the current frequency
mag(i) = abs(x(1));
phase(i) = angle(x(1)) * 180/pi;
X(i,:) = x';
mpp = max(mag(1,:))/30;
[Ypk,Xpk,Wpk,Ppk] = findpeaks(mag(1,:),'MinPeakProminence',mpp, 'WidthReference','halfheight');
Xpk = Xpk + min(size(mag)) - 1;
[~,mxidx] = maxk(Ppk,4); % to get top 4 peak prominences
Ypkc{i} = Ypk(mxidx); % peak amp
Xpkc{i} = Xpk(mxidx); % peak locations
Wpkc{i} = Wpk(mxidx); % peak widths
Ppkc{i} = Ppk(mxidx); % peak prominences
freq{i} = f(Xpkc{i}); % Frequency
end
figure;
subplot(2, 1, 1);
%plot(f, mag);
plot(f,mag,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
ylim([0 3.5/10000]);
title('Frequency Response Function');
grid on;
subplot(2, 1, 2);
plot(f, mod(phase+180,360)-180,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Phase (deg)');
ylim([-180, 180]);
grid on;
Ypkc = cell(1,4);
Xpkc = cell(1,4);
Wpkc = cell(1,4);
Ppkc = cell(1,4);
for i = 1:4
% Find the minimum peak prominence as a fraction of the maximum response
mpp(1,i) = max(X(:,i))/40;
% Find the peaks in the response signal
[Ypk,Xpk,Wpk,Ppk] = findpeaks(X(:,i), 'MinPeakProminence', mpp(1,i), 'WidthReference', 'halfheight');
% Adjust the peak locations to account for the starting index of the response signal
Xpk = Xpk + 1;
% Find the top 4 peak prominences and store the peak information
[~, mxidx] = maxk(Ppk, 4);
Ypkc{i} = Ypk(mxidx);
Xpkc{i} = Xpk(mxidx);
Wpkc{i} = Wpk(mxidx);
Ppkc{i} = Ppk(mxidx);
end
% Plot the magnitude, phase, and displacement of the FRF in Hz
figure;
subplot(2, 2, 1);
plot(f, abs(X(:,1)), 'b');
hold on;
plot(f(Xpk), Ypk, 'dr');
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X1');
grid on;
subplot(2, 2, 2);
plot(f, abs(X(:,2)),'b');
hold on;
plot(f(Xpk), Ypk, 'dr');
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X2');
grid on;
subplot(2, 2, 3);
plot(f, abs(X(:,3)),'b');
hold on;
plot(f(Xpk), Ypk, 'dr');
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X3');
grid on;
subplot(2, 2, 4);
plot(f, abs(X(:,4)),'b');
hold on;
plot(f(Xpk), Ypk, 'dr');
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X4');
grid on;
clear C damp_ratio F i ind K K1_Th K2_Th M Natural_freq tspan mxidx
function dydt = vibration_equation(t, y, M, C, K, F)
% Compute the acceleration
x = y(1:4);
v = y(5:8);
a = M \ (F(t) - C*v - K*x);
% Compute the derivative of the state vector
dydt = [v; a];
end
Right now, I am getting wrong number of peaks at wrong frequancy can anyone help me with this bug.
  1 Comment
AL
AL on 21 Mar 2023
Moved: Mathieu NOE on 22 Mar 2023
Good morning @Mathieu NOE,
The modification which you have suggested are working perfectly and I really appricate youe efforts. Have a wonderful day.
-AL.

Sign in to comment.

Accepted Answer

Mathieu NOE
Mathieu NOE on 20 Mar 2023
hello
most obviousy you didn't peak the right data in this plot (a copy paste from above that I fixed below, look for the comment : % <= here)
also i am not sure you need this . seems to me the output is better without
also , the parameters used with findpeaks seems not optimal as you don't pick the 4 dominant peaks .
% Adjust the peak locations to account for the starting index of the response signal
%Xpk = Xpk + 1;
clear
% Define the mass, damping, and stiffness matrices
load C.mat
load K.mat
load M.mat
% Define the input force as a sinusoidal function of frequency w in Hz
f = linspace(0, 40, 100); % linearly spaced frequency vector in Hz
w = 2*pi*f; % angular frequency vector in rad/s
F = @(t) [sin(2*pi*f(1)*t); zeros(3, 1)];
% Define the initial conditions
x0 = zeros(4, 1);
v0 = zeros(4, 1);
y0 = [x0; v0];
ind = 100;
% Define the time span
tspan = [0 20];
% Preallocate arrays to store the magnitude and phase of the response
mag = zeros(size(w));
phase = zeros(size(w));
X = zeros(length(w), 4);
% Loop over the frequency vector and compute the response at each frequency
for i = 1:length(w)
% Define the input force at the current frequency
F = @(t) [sin(w(i)*t); zeros(3, 1)];
% Solve the differential equation to obtain the steady-state response
[~, y] = ode45(@(t, y) vibration_equation(t, y, M, C, K, F), tspan, y0);
x = y(end, 1:4)';
% Compute the magnitude, phase, and displacement of the response at the current frequency
mag(i) = abs(x(1));
phase(i) = angle(x(1)) * 180/pi;
X(i,:) = x';
mpp = max(mag(1,:))/30;
[Ypk,Xpk,Wpk,Ppk] = findpeaks(mag(1,:),'MinPeakProminence',mpp, 'WidthReference','halfheight');
Xpk = Xpk + min(size(mag)) - 1;
[~,mxidx] = maxk(Ppk,4); % to get top 4 peak prominences
Ypkc{i} = Ypk(mxidx); % peak amp
Xpkc{i} = Xpk(mxidx); % peak locations
Wpkc{i} = Wpk(mxidx); % peak widths
Ppkc{i} = Ppk(mxidx); % peak prominences
freq{i} = f(Xpkc{i}); % Frequency
end
figure;
subplot(2, 1, 1);
%plot(f, mag);
plot(f,mag,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
ylim([0 3.5/10000]);
title('Frequency Response Function');
grid on;
subplot(2, 1, 2);
plot(f, mod(phase+180,360)-180,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Phase (deg)');
ylim([-180, 180]);
grid on;
Ypkc = cell(1,4);
Xpkc = cell(1,4);
Wpkc = cell(1,4);
Ppkc = cell(1,4);
for i = 1:4
% Find the minimum peak prominence as a fraction of the maximum response
mpp(1,i) = max(X(:,i))/40;
% Find the peaks in the response signal
[Ypk,Xpk,Wpk,Ppk] = findpeaks(X(:,i), 'MinPeakProminence', mpp(1,i), 'WidthReference', 'halfheight');
% Adjust the peak locations to account for the starting index of the response signal
%Xpk = Xpk + 1;
% Find the top 4 peak prominences and store the peak information
[~, mxidx] = maxk(Ppk, 4);
Ypkc{i} = Ypk(mxidx);
Xpkc{i} = Xpk(mxidx);
Wpkc{i} = Wpk(mxidx);
Ppkc{i} = Ppk(mxidx);
end
% Plot the magnitude, phase, and displacement of the FRF in Hz
figure;
subplot(2, 2, 1);
plot(f, abs(X(:,1)), 'b');
hold on;
plot(f(Xpkc{1}), Ypkc{1}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X1');
grid on;
subplot(2, 2, 2);
plot(f, abs(X(:,2)),'b');
hold on;
plot(f(Xpkc{2}), Ypkc{2}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X2');
grid on;
subplot(2, 2, 3);
plot(f, abs(X(:,3)),'b');
hold on;
plot(f(Xpkc{3}), Ypkc{3},'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X3');
grid on;
subplot(2, 2, 4);
plot(f, abs(X(:,4)),'b');
hold on;
plot(f(Xpkc{4}), Ypkc{4}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X4');
grid on;
clear C damp_ratio F i ind K K1_Th K2_Th M Natural_freq tspan mxidx
function dydt = vibration_equation(t, y, M, C, K, F)
% Compute the acceleration
x = y(1:4);
v = y(5:8);
a = M \ (F(t) - C*v - K*x);
% Compute the derivative of the state vector
dydt = [v; a];
end
  3 Comments
Mathieu NOE
Mathieu NOE on 20 Mar 2023
Moved: Mathieu NOE on 20 Mar 2023
Glad I could be of some help
it was a minor problem
have a great day
Mathieu NOE
Mathieu NOE on 20 Mar 2023
hello @AL
I could make some further improvements in the code
as you want explicitely the 4 dominant peaks , you can ask directly findpeaks to do so
[Ypk,Xpk,Wpk,Ppk] = findpeaks(mag(1,:),'NPeaks',4,'SortStr','descend');
see below :
% Define the mass, damping, and stiffness matrices
load C.mat
load K.mat
load M.mat
% Define the input force as a sinusoidal function of frequency w in Hz
f = linspace(0, 40, 100); % linearly spaced frequency vector in Hz
w = 2*pi*f; % angular frequency vector in rad/s
F = @(t) [sin(2*pi*f(1)*t); zeros(3, 1)];
% Define the initial conditions
x0 = zeros(4, 1);
v0 = zeros(4, 1);
y0 = [x0; v0];
ind = 100;
% Define the time span
tspan = [0 20];
% Preallocate arrays to store the magnitude and phase of the response
mag = zeros(size(w));
phase = zeros(size(w));
X = zeros(length(w), 4);
% Loop over the frequency vector and compute the response at each frequency
for i = 1:length(w)
% Define the input force at the current frequency
F = @(t) [sin(w(i)*t); zeros(3, 1)];
% Solve the differential equation to obtain the steady-state response
[~, y] = ode45(@(t, y) vibration_equation(t, y, M, C, K, F), tspan, y0);
x = y(end, 1:4)';
% Compute the magnitude, phase, and displacement of the response at the current frequency
mag(i) = abs(x(1));
phase(i) = angle(x(1)) * 180/pi;
X(i,:) = x';
mpp = max(mag(1,:))/30;
end
% find the 4 dominant peaks
[Ypk,Xpk,Wpk,Ppk] = findpeaks(mag(1,:),'NPeaks',4,'SortStr','descend');
Xpk = Xpk + min(size(mag)) - 1;
figure;
subplot(2, 1, 1);
%plot(f, mag);
plot(f,mag,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
ylim([0 3.5/10000]);
title('Frequency Response Function');
grid on;
subplot(2, 1, 2);
plot(f, mod(phase+180,360)-180,f(Xpk),Ypk,'dr');
xlabel('Frequency (Hz)');
ylabel('Phase (deg)');
ylim([-180, 180]);
grid on;
% second plot with all four FRF's
Ypkc = cell(1,4);
Xpkc = cell(1,4);
Wpkc = cell(1,4);
Ppkc = cell(1,4);
for i = 1:4
% Find the peaks in the response signal
[Ypk,Xpk,Wpk,Ppk] = findpeaks(abs(X(:,i)),'NPeaks',4,'SortStr','descend');
Ypkc{i} = Ypk;
Xpkc{i} = Xpk;
Wpkc{i} = Wpk;
Ppkc{i} = Ppk;
end
% Plot the magnitude, phase, and displacement of the FRF in Hz
figure;
subplot(2, 2, 1);
plot(f, abs(X(:,1)), 'b');
hold on;
plot(f(Xpkc{1}), Ypkc{1}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X1');
grid on;
subplot(2, 2, 2);
plot(f, abs(X(:,2)),'b');
hold on;
plot(f(Xpkc{2}), Ypkc{2}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X2');
grid on;
subplot(2, 2, 3);
plot(f, abs(X(:,3)),'b');
hold on;
plot(f(Xpkc{3}), Ypkc{3},'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X3');
grid on;
subplot(2, 2, 4);
plot(f, abs(X(:,4)),'b');
hold on;
plot(f(Xpkc{4}), Ypkc{4}, 'dr'); % <= here
xlabel('Frequency (Hz)');
ylabel('Displacement (m)');
ylim([0 3.5/10000]);
title('X4');
grid on;
clear C damp_ratio F i ind K K1_Th K2_Th M Natural_freq tspan mxidx
function dydt = vibration_equation(t, y, M, C, K, F)
% Compute the acceleration
x = y(1:4);
v = y(5:8);
a = M \ (F(t) - C*v - K*x);
% Compute the derivative of the state vector
dydt = [v; a];
end

Sign in to comment.

More Answers (0)

Products


Release

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!