How to get the derivate using bvp4c
2 views (last 30 days)
Show older comments
I have a coupled non-linear differential equations u''-b1*(t')*(u')+(1+b1*t)*[G1*F1*t+G2*F1*p-F3*P]=0; t''-b2*(t')^2+B*F6*(u')^2+(b2-b1)*t*B*F6*(u')^2-b2*b1*B*F6*t^2*(u')^2=0; p''- A*p=0 and the boundary conditions are u=0,t=1+m,p=1+n at y=-1 and u=0,t=1,p=1 at y=1.
The code is:
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
Alpha.*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
I like to know how to get the derivative value du/dy at y= -1 and y=1 from the above program
Please help me to complete my code.
0 Comments
Accepted Answer
Torsten
on 26 Nov 2022
I assumed Alpha = A in your code.
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
A*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
plot(S.x,S.y(1,:))
S.y(4,1) % u'(-1)
S.y(4,end) % u'(1)
4 Comments
Torsten
on 27 Nov 2022
So you should come to the result that
S.y(5,1) is dt/dy at y = -1
S.y(5,end) is dt/dy at y = 1
S.y(6,1) is dp/dy at y = -1
S.y(6,end) is dp/dy at y = 1
More Answers (0)
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!