for循环中使用solve隐函数的求解出错。

2 views (last 30 days)
N/A
N/A on 16 Nov 2022
Answered: N/A on 16 Nov 2022
隐函数为K1*X^8+K2*X^6+K3*X^4+K4*X^2+K5=0
其中里面的系数K1-K5为数组,代码如下:
lamda=0.3;
h=600;
c=3e6;
fri=pi/12;
gama=2.5e4;
theta=0:0.1:2*pi;
k1=9*(1-lamda)^2;
k2=6*(1-lamda^2)*cos(2.*theta)-12*(1-lamda)^2;
k3=(1+lamda)^2-4*(1-lamda^2)*cos(2.*theta)+[2*(1-lamda)^2]*[(5-2*(sin(fri))^2)*(cos(2.*theta)).^2-(sin(2.*theta)).^2];
k4=-4*[(1-lamda)^2]*cos(4.*theta)+2*(1-lamda^2)*(1-2*(sin(fri))^2)*cos(2.*theta)-[4*c*(1-lamda)*sin(2*fri)*cos(2.*theta)]/(gama*h);
k5=(1-lamda)^2-[(sin(fri))^2]*(1+lamda+[2*c*cos(fri)]/[gama*h*sin(fri)])^2;
k11=4.41*ones(size(theta));
k15=-0.0325*ones(size(theta));
for i=1:63
=solve('k11(i)*x^8+k2(i)*x^6+k3(i)*x^4+k4(i)*x^2+k15(i)=0','x');
i=i+1
end
运行程序后
y =
RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[1]^(1/2)
RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[2]^(1/2)
RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[3]^(1/2)
RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[4]^(1/2)
-RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[1]^(1/2)
-RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[2]^(1/2)
-RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[3]^(1/2)
-RootOf(z^4*k11(i) + z^3*k2(i) + z^2*k3(i) + z*k4(i) + k15(i), z)[4]^(1/2)
这是怎末回事,还请指教,谢谢。

Accepted Answer

N/A
N/A on 16 Nov 2022
for i=1:3
y{i}=solve(k11(i)*x^8+k2(i)*x^6+k3(i)*x^4+k4(i)*x^2+k15(i)==0,x);
end
结果是:
vpa(y{1})
ans =
- 0.61671196841835474795730080534265 + 0.66542951546401041149070653265628i
- 0.61671196841835474795730080534265 - 0.66542951546401041149070653265628i
-0.2038605258080777876882011038246i
-0.51158849219005401945580599359815
0.61671196841835474795730080534265 - 0.66542951546401041149070653265628i
0.61671196841835474795730080534265 + 0.66542951546401041149070653265628i
0.2038605258080777876882011038246i
0.51158849219005401945580599359815
>> vpa(y{2})
ans =
0.61551448724149592788916877780375 - 0.64387748327829101517239446111829i
0.61551448724149592788916877780375 + 0.64387748327829101517239446111829i
0.22080241059789690759758957187972i
0.49001176899630344153296418549308
- 0.61551448724149592788916877780375 + 0.64387748327829101517239446111829i
- 0.61551448724149592788916877780375 - 0.64387748327829101517239446111829i
-0.22080241059789690759758957187972i
-0.49001176899630344153296418549308

More Answers (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!