- Only the image?
- The figure file for the image?
- The data that was used to create the image?
How can I get the 3 minimum values of this plot?
5 views (last 30 days)
Show older comments
How can I get the number of neurons on which I get the smallest RMSE for Training, Validation and Test set.
for i = 1:60
net = feedforwardnet(i);
net.trainParam.epochs = 300;
[net, tr] = train(net, input, output, 'useparallel', 'yes');
pnet_train = net(input(:,tr.trainInd)); % prediction
tnet_train = output(:,tr.trainInd); % target
rmse_train(i) = sqrt(mean((pnet_train - tnet_train).^2));
pnet_vali = net(input(:,tr.valInd)); % prediction
tnet_vali = output(:,tr.valInd); % target
rmse_vali(i) = sqrt(mean((pnet_vali - tnet_vali).^2));
pnet_test = net(input(:,tr.testInd)); % prediction
tnet_test = output(:,tr.testInd); % target
rmse_test(i) = sqrt(mean((pnet_test - tnet_test).^2));
end
figure;
plot(1:60,rmse_train,'LineWidth',2)
hold on;
plot(1:60,rmse_vali,'LineWidth',2)
hold on;
plot(1:60,rmse_test,'LineWidth',2)
title('Performance');
legend('Training','Validation','Test');
xlabel('Neurons');
ylabel('RMSE');
axis auto;
grid on;
2 Comments
the cyclist
on 6 Nov 2022
Edited: the cyclist
on 6 Nov 2022
What information do you have?
Accepted Answer
More Answers (0)
See Also
Categories
Find more on Pattern Recognition and Classification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!