Fourth order approx. of first derivative.
3 views (last 30 days)
Show older comments
Jim Oste
on 25 Feb 2015
Commented: John D'Errico
on 25 Feb 2015
I am working with numerical differentiation and I am approximating the first derivative of f(x)=sin^2(x) with a fourth order approximation of the form:
I have the following code to approximate f'(x) at a = pi/4
k = 1:15;
h = 10.^(-k);
a = pi/4;
D = (1/12.*h).*(-3.*sin(a-h).^2-10.*sin(a).^2+18.*sin(a+h).^2-...
6.*sin(a+2.*h).^2+sin(a+3.*h).^2);
As h gets smaller D should be getting closer to 1 but when I run this code D gets closer to zero. Am I imputing the sin term incorrectly?
0 Comments
Accepted Answer
Roger Stafford
on 25 Feb 2015
Your code for 'D' has an error. You have multiplied by 'h' instead of dividing by it. The code should read:
D = (1/12./h).*(-3.*sin(a-h).^2 ...........
4 Comments
John D'Errico
on 25 Feb 2015
I thought so. A worthwhile thing to do is to look at the centered difference to compute that same value, varying over -2h to +2h. Why would it be a better choice of method in general? Thus, something like this (assuming I did my back of the envelope computations properly)
((f(2h) - f(-2h)) - 8*(f(h) - f(-h)))/(12h)
Why might the above template be a better choice in general, if it is available?
More Answers (0)
See Also
Categories
Find more on Polynomials in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!