NARX Closed Loop Network for one step prediction

2 views (last 30 days)
Hi everyone,
i am using NARX Closed Loop Networks for timeseries prediction. I got a network with 6 input delays and 6 feedback delays, as showed in the figure:
I understand that this network is able to predict y(t) = f(y(t-1),...,y(t-6),u(t-1),...,u(t-6)). If this is true, i should be able to predict one y value having 6 past values from y and u. The problem is, when I use
[xc,xic,aic,~] = preparets(net,input,{},output);
with this dataset of 6 samples, the argument xc (shifted inputs) is empty. I make my prediction:
[yc] = net(xc,xic,aic);
And yc is also empty. As far as I understand NARX Networks, if I'm feeding the network with 6 past input samples and 6 past output samples it should be enough, but it isn't. It needs 7 input values to make one prediction. Why is this?
Thank you for the help.

Answers (1)

Krishna
Krishna on 3 Jul 2022
Hey Pablo,
I think you need 6 previous values as input and for that the network predicts the 7th value.
Also same goes for the training part.

Categories

Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!