Write a MATLAB script file to determine the displacements at points P, Q and R. Also determine the reactions at points S, T and U. (E = 200 GPa, ν = 0.3).

3 views (last 30 days)

Answers (1)

BhaTTa
BhaTTa on 11 Mar 2025
Hey @Bernard P Rayen, To determine the displacements and reactions for a 2D isotropic plate with uniform thickness, you'll typically need to solve a finite element analysis (FEA) problem, you can use the Partial Differential Equation (PDE) Toolbox or write a custom script using basic principles.
Below is a simplified example of how you might set up a MATLAB script to solve such a problem using the PDE Toolbox. This will involve defining the geometry, material properties, boundary conditions, and loads.
% Define material properties
E = 200e9; % Young's modulus in Pascals (200 GPa)
nu = 0.3; % Poisson's ratio
% Create a PDE model for structural mechanics
model = createpde('structural', 'static-planestress');
% Define the geometry (a simple rectangular plate for this example)
L = 1.0; % Length of the plate in meters
W = 0.5; % Width of the plate in meters
% Geometry definition
R1 = [3, 4, 0, L, L, 0, 0, 0, W, W]';
gd = R1;
ns = char('R1');
ns = ns';
sf = 'R1';
g = decsg(gd, sf, ns);
geometryFromEdges(model, g);
% Assign material properties
structuralProperties(model, 'YoungsModulus', E, 'PoissonsRatio', nu);
% Define boundary conditions
% Fix one edge (e.g., at x = 0)
structuralBC(model, 'Edge', 1, 'Constraint', 'fixed');
% Apply a load (e.g., uniformly distributed load at the opposite edge)
pressure = 1e6; % Pressure in Pascals
structuralBoundaryLoad(model, 'Edge', 3, 'SurfaceTraction', [pressure; 0]);
% Generate mesh
generateMesh(model, 'Hmax', 0.05);
% Solve the PDE
result = solve(model);
% Extract displacements
u = result.Displacement;
% Display results
figure
pdeplot(model, 'XYData', u.Magnitude, 'ZData', u.Magnitude, 'ColorMap', 'jet', 'Deformation', u)
title('Displacement Magnitude')
xlabel('X (m)')
ylabel('Y (m)')
colorbar
% Extract and display displacements at specific points P, Q, R
% Note: Replace [x, y] with actual coordinates of P, Q, R
points = [0.25, 0.25; 0.75, 0.25; 0.5, 0.4];
for i = 1:size(points, 1)
[ux, uy] = interpolateDisplacement(result, points(i, :));
fprintf('Displacement at point (%f, %f): Ux = %e, Uy = %e\n', points(i, 1), points(i, 2), ux, uy);
end
Hope it helps.

Categories

Find more on Get Started with MATLAB in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!