solve Nonlinear PDE and compare the analytical and numerical solutions
9 views (last 30 days)
Show older comments
I wrote the following code for this problem, but the code stuck at ligne 56. what wrong with is and how can I avoid that problem?
clear all; close all; clc;
% Construct spatial mesh
Nx = 1650; % Number of spatial steps
xl = 0; % Left x boundary
xr = 1; % Right x boundary
dx = (xr-xl)/Nx; % Spatial step
x = xl:dx:xr; % x
% Construct temporal mesh
tf = 0.5; % Final time
dt = 1/3300; % Timestep
Nt = round(tf/dt); % Number of timesteps
t = 0:dt:tf; % t
% Parameters
umax = 15; % Found by a perturbation of t=10^-2
C = umax*dt/dx; % Convective Stability / Courant Number
disp("Courant Number: "+C)
V = dt/(dx*dx); % Viscous Stability / Diffusion Number
disp("Diffusion Number: "+V)
% Dephine phi(x)
phi=zeros(Nx+1,Nt+1);
tt=zeros(1,Nt+1);
for j=1:Nt
x(1,j+1)=x(1,j)+dx;
end
for j=1:Nt
tt(1,j+1)=tt(1,j)+dt;
end
for i=1:Nx+1
for j=1:Nt+1
A(j,i)=(50/3)*(x(j)-0.5+4.95*tt(i));
B(j,i)=(250/3)*(x(j)-0.5+0.75*tt(i));
C(j,i)=(500/3)*(x(j)-0.375);
phi(j,i)=(0.1*exp(-A(j,i))+0.5*exp(-B(j,i))+exp(-C(j,i)))/(exp(-A(j,i))+exp(-B(j,i))+exp(-C(j,i)));
end
end
% Define Boundary & Initial Conditions
% Boundary conditions (Dirichlet)
u(:,1)=phi(:,1);
%left boundary condition
u(1,1)=phi(1,1);
%right boundary condition
u(Nx+1,1)=phi(Nx+1,1);
% Define the right (MMr) and left (MMl) matrices in the Crank-Nicolson method
aal(1:Nx-2) = -V; % Below the main diagonal in MMl
bbl(1:Nx-1) = 2+2*V; % The main diagonal in MMl
ccl(1:Nx-2) = -V; % Above the main diagonal in MMl
MMl = diag(bbl,0)+diag(aal,-1)+diag(ccl,1); % Building the MMl matrix
aar(1:Nx-2) = V; % Below the main diagonal in MMr
bbr(1:Nx-1) = 2-2*V; % The main diagonal in MMr
ccr(1:Nx-2) = V; % Above the main diagonal in MMr
MMr = diag(bbr,0)+diag(aar,-1)+diag(ccr,1); % Building the MMr matrix
% Implementation of the Crank-Nicholson method
for j = 1:Nt
u(2:Nx,j+1) = inv(MMl)*MMr*u(2:Nx,j);
end
figure()
clf
plot(x,phi(:,ts+1),'b--o')
hold on
%plot(x,phi(:,1001))
xlabel('x')
ylabel('U[x,t]')
title('Analytical Solution')
figure()
clf
plot(x,u(:,:),'g')
hold on
%plot(x,phi(:,1001))
xlabel('x')
ylim([0 1.2])
ylabel('U[x,t]')
title('Numerical Solution')
0 Comments
Accepted Answer
Torsten
on 19 Mar 2022
Edited: Torsten
on 19 Mar 2022
In the recursion
% Implementation of the Crank-Nicholson method
for j = 1:Nt
u(2:Nx,j+1) = inv(MMl)*MMr*u(2:Nx,j);
end
you never address u(1,:) and u(Nx+1,:) which contain the boundary values of your problem.
So this loop cannot be correct to get the solution of your problem.
10 Comments
More Answers (1)
Torsten
on 20 Mar 2022
Edited: Torsten
on 21 Mar 2022
D = 3e-3;
xstart = 0.0;
xend = 1.0;
dx = 1/400;
tstart = 0.0;
tend = 0.5;
dt = 0.01;
X = (xstart:dx:xend).';
T = (tstart:dt:tend);
nx = numel(X);
nt = numel(T);
U_ana = u_ana(T,X);
U = zeros(nx,nt);
U(:,1) = U_ana(:,1);
told = T(1);
uold = U(:,1);
for j = 2:nt
tnew = told + dt;
f = @(u)fun(u,uold,tnew,told,dt,X,nx,dx,D);
unew = fsolve(f,uold);
U(:,j) = unew;
told = tnew;
uold = unew;
j
end
plot(X,U(:,10))
hold on
plot(X,U_ana(:,10))
function res = fun(u,uold,t,told,dt,X,nx,dx,D)
res = zeros(nx,1);
res(1) = u(1) - 0.5*(u_ana(told,X(1)) + u_ana(t,X(1)));
res(2:nx-1) = (u(2:nx-1)-uold(2:nx-1))/dt - 0.5*( ...
(-uold(2:nx-1).*(uold(3:nx)-uold(1:nx-2))/(2*dx) + ...
D*(uold(3:nx)-2*uold(2:nx-1)+uold(1:nx-2))/dx^2) + ...
(-u(2:nx-1).*(u(3:nx)-u(1:nx-2))/(2*dx) + ...
D*(u(3:nx)-2*u(2:nx-1)+u(1:nx-2))/dx^2));
res(nx) = u(nx) - 0.5*(u_ana(told,X(nx)) + u_ana(t,X(nx)));
end
function out = u_ana(t,x)
A = 50/3*(x-0.5+4.95*t);
B = 250/3*(x-0.5+0.75*t);
C = 500/3*(x-0.375);
out = (0.1*exp(-A)+0.5*exp(-B)+exp(-C))./(exp(-A)+exp(-B)+exp(-C));
end
10 Comments
Torsten
on 20 Mar 2022
You should check whether the optimization toolbox is installed because it seems the optimization toolbox is not:
See Also
Categories
Find more on PDE Solvers in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!