Curve fitting using lsqcurvefit

3 views (last 30 days)
Hi currently i am trying to fit my measured data to a model. I have followed this example https://au.mathworks.com/matlabcentral/answers/478835-lsqcurvefit-initial-values-stays-the-same#answer_391692 . I am also attaching the code from the example. i want to know what parameters do i need to change to fit my measured data to the model and extract the values from it. Any help is appreicated. I am also attaching my data.
T = readtable('cole.xlsx');
x = T{:,1}; %freq
y = T{:,2}; %real
%Transpose
freq = x.';
e_real = y.';
options = optimset('MaxFunEvals',10000);
options=optimset(options,'MaxIter',10000);
guess = 4.5;
UB = guess + 1;
LB = guess - 1;
lb = [];
ub = [];
x0 = [6,guess,2.5,0.6,0.09];
x = lsqcurvefit(@flsq,x0,freq,e_real,lb,ub,options)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x =
4.8828 - 0.0885i 5.0695 - 0.1843i 1.2278 -92.9851i -1.0163 - 9.3958i -0.0126 - 0.0739i
e_f = x(1);
e_del = x(2)*1e2;
tau1 = x(3)*1e-12;
alf1 = x(4);
sig = x(5);
yfit = real(flsq(x,freq));
%plot e_real against freq
plot(freq,e_real,'k.',freq,yfit,'b-')
legend('Data','Fitted')
title('Data and Fitted Curve')
function y = flsq(x,freq)
x(3)=x(3)*1e-12;
y = x(1) + (x(2)-x(1))./(1 + ((1j*2*pi.*freq*x(3)).^(1-x(4))))+x(5)./(1j*2*pi*freq*8.854e-12);
end
  7 Comments
Walter Roberson
Walter Roberson on 8 Mar 2022
lsqcurvefit() and fmincon() both do iterative automatic ways to update values to provide best fits.
Walter Roberson
Walter Roberson on 8 Mar 2022
If this has physical significance, then are there any constraints on the parameters of the model? Any that have to be real-valued? Any that have to be positive?

Sign in to comment.

Accepted Answer

Walter Roberson
Walter Roberson on 7 Mar 2022
You can get a better fit by either telling lsqcurvefit() a better starting point, or by using a different optimizer.
But... remember that "better fit" mathematically does not necessarily mean "follows the curve more closely"
format long g
filename = 'https://www.mathworks.com/matlabcentral/answers/uploaded_files/917874/cole.xlsx';
T = readtable(filename);
x = T{:,1}; %freq
y = T{:,2}; %real
%Transpose
freq = x.';
e_real = y.';
options = optimset('MaxFunEvals',10000);
options=optimset(options,'MaxIter',10000);
guess = 4.5;
UB = guess + 1;
LB = guess - 1;
lb = [];
ub = [];
x0 = [6,guess,2.5,0.6,0.09];
[x, fval] = lsqcurvefit(@flsq,x0,freq,e_real,lb,ub,options)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x =
4.88278441116842 - 0.0884918454761463i 5.06952748610154 - 0.184297340006755i 1.22778921925455 - 92.9851457164006i -1.01629693596011 - 9.39581846397004i -0.0126281060006031 - 0.073855580530327i
fval =
2.50307155416643
e_f = x(1);
e_del = x(2)*1e2;
tau1 = x(3)*1e-12;
alf1 = x(4);
sig = x(5);
yfit = real(flsq(x,freq));
%plot e_real against freq
plot(freq,e_real,'k.',freq,yfit,'b-')
legend('Data','Fitted')
title('Data and Fitted Curve -- lsqcurvefit')
Residue = @(x) norm(flsq(x,freq) - e_real);
options = optimset('MaxFunEvals', 1E5);
options = optimset(options, 'MaxIter', 1E5);
options = optimset(options, 'Display', 'none');
for K = 2 : 50
guess = x0 + randn(1,5);
[x(K,:), fval(K)] = fmincon(Residue, guess, [], [], [], [], [], [], [], options);
end
[~, idx] = min(abs(fval));
disp('original -- lsqcurvefit')
original -- lsqcurvefit
disp([fval(1), x(1,:)])
Columns 1 through 4 2.50307155416643 + 0i 4.88278441116842 - 0.0884918454761463i 5.06952748610154 - 0.184297340006755i 1.22778921925455 - 92.9851457164006i Columns 5 through 6 -1.01629693596011 - 9.39581846397004i -0.0126281060006031 - 0.073855580530327i
disp('best found in several tries of fmincon')
best found in several tries of fmincon
disp([fval(idx), x(idx,:)])
1.82932684842456 4.25784166349341 -638714.651612716 5141.92675473731 -3.02543789002661 0.000633983073703346
e_f = x(idx,1);
e_del = x(idx,2)*1e2;
tau1 = x(idx,3)*1e-12;
alf1 = x(idx,4);
sig = x(idx,5);
yfit = real(flsq(x(idx,:),freq));
%plot e_real against freq
plot(freq, e_real, 'k.', freq, yfit, 'b-')
legend('Data','Fitted')
title('Data and Fitted Curve -- fmincon')
function y = flsq(x,freq)
x(3)=x(3)*1e-12;
y = x(1) + (x(2)-x(1))./(1 + ((1j*2*pi.*freq*x(3)).^(1-x(4))))+x(5)./(1j*2*pi*freq*8.854e-12);
end
  5 Comments
Walter Roberson
Walter Roberson on 8 Mar 2022
ga() is another iterative means for improving fit, but it does not help much. In one of my earlier runs, I got better than the below display, but it was still worse than fmincon() so I am not going to bother to show it.
format long g
filename = 'https://www.mathworks.com/matlabcentral/answers/uploaded_files/917874/cole.xlsx';
T = readtable(filename);
x = T{:,1}; %freq
y = T{:,2}; %real
%Transpose
freq = x.';
e_real = y.';
options = optimset('MaxFunEvals',10000);
options=optimset(options,'MaxIter',10000);
guess = 4.5;
UB = guess + 1;
LB = guess - 1;
lb = [];
ub = [];
x0 = [6,guess,2.5,0.6,0.09];
[x, fval] = lsqcurvefit(@flsq,x0,freq,e_real,lb,ub,options)
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
x =
4.88278441116842 - 0.0884918454761463i 5.06952748610154 - 0.184297340006755i 1.22778921925455 - 92.9851457164006i -1.01629693596011 - 9.39581846397004i -0.0126281060006031 - 0.073855580530327i
fval =
2.50307155416643
e_f = x(1);
e_del = x(2)*1e2;
tau1 = x(3)*1e-12;
alf1 = x(4);
sig = x(5);
yfit = real(flsq(x,freq));
%plot e_real against freq
plot(freq,e_real,'k.',freq,yfit,'b-')
legend('Data','Fitted')
title('Data and Fitted Curve -- lsqcurvefit')
Residue = @(x) norm(flsq(x,freq) - e_real);
options = optimset('MaxFunEvals', 1E5);
options = optimset(options, 'MaxIter', 1E5);
options = optimset(options, 'Display', 'none');
tic
for K = 2 : 200
[x(K,:), fval(K)] = ga(Residue, 5, [], [], [], [], [], [], [], options);
end
toc
Elapsed time is 38.143890 seconds.
[~, idx] = min(abs(fval));
disp('original -- lsqcurvefit')
original -- lsqcurvefit
disp([fval(1), x(1,:)])
Columns 1 through 4 2.50307155416643 + 0i 4.88278441116842 - 0.0884918454761463i 5.06952748610154 - 0.184297340006755i 1.22778921925455 - 92.9851457164006i Columns 5 through 6 -1.01629693596011 - 9.39581846397004i -0.0126281060006031 - 0.073855580530327i
disp('best found in several tries of ga')
best found in several tries of ga
disp([fval(idx), x(idx,:)])
2.0261188723609 4.23046723004257 3.35326686725843 153.911545598562 -0.327809240216987 0.0453959038185919
e_f = x(idx,1);
e_del = x(idx,2)*1e2;
tau1 = x(idx,3)*1e-12;
alf1 = x(idx,4);
sig = x(idx,5);
yfit = real(flsq(x(idx,:),freq));
%plot e_real against freq
plot(freq, e_real, 'k.', freq, yfit, 'b-')
legend('Data','Fitted')
title('Data and Fitted Curve -- ga')
function y = flsq(x,freq)
x(3)=x(3)*1e-12;
y = x(1) + (x(2)-x(1))./(1 + ((1j*2*pi.*freq*x(3)).^(1-x(4))))+x(5)./(1j*2*pi*freq*8.854e-12);
end

Sign in to comment.

More Answers (0)

Categories

Find more on Get Started with Optimization Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!