Vandermonde-like matrix

1 view (last 30 days)
Mokrane Mahdi
Mokrane Mahdi on 3 Mar 2022
Commented: Mokrane Mahdi on 3 Mar 2022
For any given number x, what's the easiest way to generate the following square matrix without using any loop:
0 x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0)
x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5)
x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0)
x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5)
x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5) x^(-4.0)
Here, in this example, I set the size of the matrix to be 5, but it has to be generated for any integer n.
Notice the matrix does look like the Vandermonde matrix, hence the idea of using repmat and cumprod commands..
Thanks in advance !

Accepted Answer

KSSV
KSSV on 3 Mar 2022
p = -(0:0.5:4) ; % power values
n = 5 ; % n value
ind1 = bsxfun(@plus, (1 : n), (0 : numel(p) - n).'); % make moving window indices
p = p(ind1) % power values
p = 5×5
0 -0.5000 -1.0000 -1.5000 -2.0000 -0.5000 -1.0000 -1.5000 -2.0000 -2.5000 -1.0000 -1.5000 -2.0000 -2.5000 -3.0000 -1.5000 -2.0000 -2.5000 -3.0000 -3.5000 -2.0000 -2.5000 -3.0000 -3.5000 -4.0000
x = rand ; % your x
V = x.^p % what you wanted
V = 5×5
1.0e+03 * 0.0010 0.0028 0.0077 0.0214 0.0595 0.0028 0.0077 0.0214 0.0595 0.1654 0.0077 0.0214 0.0595 0.1654 0.4594 0.0214 0.0595 0.1654 0.4594 1.2760 0.0595 0.1654 0.4594 1.2760 3.5443

More Answers (1)

John D'Errico
John D'Errico on 3 Mar 2022
The easiest way? Probably this line: (in R2016b or later)
x.^(((0:-1:1-n)' + (0:-1:1-n))/2)
If you want to use two lines of code, then it looks simpler yet.
N = (0:-1:1-n)/2;
x.^(N' + N)
Easrlier releases than R2016b would use bsxfun.

Categories

Find more on Creating and Concatenating Matrices in Help Center and File Exchange

Products


Release

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!