TE-Wave Scattering from a dielectric cylinder a.k.a Richmond's article

6 views (last 30 days)
clc;
clear all;
close all;
format long;
N=6; Nphi=100; c=3e8; deltaphi=2*pi/Nphi; f=3e8; lambda=c/f; R=0.5*lambda; % Radius of the dielectric cylinder. w=2*pi*f; %eps0=(1e-9)/(36*pi); eps0=8.854187e-12; eps=4; mu0=4*pi*10^(-7); mur=1; mu=mur*mu0; eta0=sqrt(mu0/eps0); %k0=2*pi/lambda; k0=w*sqrt(eps0*mu0); k1=k0*sqrt(eps); k=k0; deltax=R/N; deltay=R/N; an=sqrt(deltax*deltay/pi); phi1=pi:deltaphi:-pi; phi=0:deltaphi:2*pi; E0=1; H0=1/eta0; %Eix=0;
x=-R:deltax:R; y=-R:deltay:R;
q=1; for m=1:2*N+1 for n=1:2*N+1 if sqrt((x(m)^2)+(y(n)^2))<=R x1(q)=x(m); y1(q)=y(n); q=q+1;
end
end
end
% scatter(x1, y1,'+')
% figure
Eix=zeros(1,length(y1)); Eiy=E0*exp(1j*k0.*(x1));
Eiy=Eiy.'; Eix=Eix.';
for m=1:length(x1) for n=1:length(y1) rho=sqrt(((x1(m)-x1(n))^2)+((y1(m)-y1(n))^2)); Kp=(1j*pi*an*besselj(1,k*an)*(eps-1))/(2*rho^3);
if m==n
A(m,n)=1+(eps-1)*(0.25*1j*pi*k*an*besselh(1,2,k*an)+1);
B(m,n)=0;
C(m,n)=0;
D(m,n)=A(m,n);
else
A(m,n)=Kp*(k*rho*((y1(m)-y1(n))^2)*besselh(0,2,k*rho)+((x1(m)-x1(n))^2-(y1(m)-y1(n))^2)*besselh(1,2,k*rho));
B(m,n)=Kp*(x1(m)-x1(n))*(y1(m)-y1(n))*(2*besselh(1,2,k*rho)-k*rho*besselh(0,2,k*rho));
C(m,n)=B(m,n);
D(m,n)=Kp*(k*rho*((x1(m)-x1(n))^2)*besselh(0,2,k*rho)+((y1(m)-y1(n))^2-(x1(m)-x1(n))^2)*besselh(1,2,k*rho));
end
end
m
end
coeffm=[A, B C,D]; Ei=[Eix Eiy];
E=(eye(size(coeffm))-coeffm)\(Ei);
Exn=E(1:length(E)/2); Eyn=E((length(E)/2)+1:length(E));
Jx=1j*w*eps0*(eps-1).*Exn; Jy=1j*w*eps0*(eps-1).*Eyn; Jx=Jx.'; Jy=Jy.';
rhog=15*lambda; % Observation radius from the center of cylinder. xg=rhog*cos(phi); yg=rhog*sin(phi);
for m=1:length(phi); Exss(m)=0; Eyss(m)=0; Esf(m)=0; Esx(m)=0; Esy(m)=0; for n=1:length(x1) rhogn=sqrt((xg(m)-x1(n))^2+(yg(m)-y1(n))^2); % Observation radius from center of the nth cell at mth angel. xgn=rhogn*cos(phi(m)); ygn=rhogn*sin(phi(m)); K=-(pi*an*besselj(1,k*an))/(2*w*eps0*rhogn^3); Exs(m,n)=K*((k*rhogn*(ygn^2)*besselh(0,2,k*rhogn)+(xgn^2-ygn^2)*besselh(1,2,k*rhogn))*Jx(n)+xgn*ygn*(2*besselh(1,2,k*rhogn)-k*rhogn*besselh(0,2,k*rhogn))*Jy(n)); Eys(m,n)=K*(xgn*ygn*(2*besselh(1,2,k*rhogn)-k*rhogn*besselh(0,2,k*rhogn))*Jx(n)+(k*rhogn*(xgn^2)*besselh(0,2,k*rhogn)+(ygn^2-xgn^2)*besselh(1,2,k*rhogn))*Jy(n)); Exss(m)=Exss(m)+Exs(m,n); % Exs, x component of the scattered electric field Eyss(m)=Eyss(m)+Eys(m,n); % Eys, y component of the scattered electric field Esf(m)=Esf(m)+((1j*sqrt((1j*pi*k)/(2*rhog))*exp(1j*k*rhog))*(eps-1)*an*besselj(1, k*an)*(Exn(n)*sin(phi(m))-Eyn(n)*cos(phi(m)))*exp(1j*k*(xg(m)*cos(phi(m))+yg(m)*sin(phi(m))))); % MoM far field approx.
end
m
end
Es=(Exss.*sin(phi)-Eyss.*cos(phi));
% ed1=abs(Exss.*sin(phi))+abs(Eyss.*cos(phi));
plot(rad2deg(phi), abs(Es)) hold on
% plot(rad2deg(phi), abs(Esf), '--k') % hold on
%%%%%%% Analytical Solution %%%%%%%
for m=1:length(phi);
Esanphi(m)=0;
for n=-30:30
% num=besjp(n,k0*R)*besselj(n,k1*R)-sqrt(mu/eps)*besselj(n,k0*R)*besjp(n, k1*R);
% denum=(sqrt(mu/eps)*besjp(n, k1*R)*besselh(n,2,k0*R)-besselj(n,k1*R)*besh2p(n, k0*R));
% ac=(j^(-n))*num/denum;
numerator=(besjp(n,k0*R)*besselj(n,k1*R))-sqrt(mur/eps)*besselj(n,k0*R)*besjp(n,k1*R);
denumerator=sqrt(mur/eps)*besjp(n,k1*R)*besselh(n,2,k0*R)-besselj(n,k1*R)*besh2p(n,k0*R);
ac=(1j^(-n))*numerator/denumerator;
%Esanphi(m)=Esanphi(m)+(E0*ac*besselh(n,2,k0*rhog)*exp(1j*n*phi(m)));
Esanphi(m)=Esanphi(m)+((-H0)*k0/(1j*w*eps0))*ac*besh2p(n,k0*rhog)*exp(1j*n*phi(m));
end
m
end
plot(rad2deg(phi), abs(Esanphi), '--+r')
title(['N=',num2str(N),'; ','Epsilon=',num2str(eps),'; ','Radius of the dielectric cylinder=',num2str(R/lambda),'*lambda','; ','Radius of the observation=',num2str(rhog/lambda),'*lambda'])
xlabel('Observation Angle (/phi)')
ylabel('Scattered Electric Field (E_s)');
legend('MoM Solution','Analitycal Solution')
grid
hi, this my code. I don't know where I am wrong. The MoM solution should be the same as analytical solution. If anyone understands and helps me , I'll appreciate. Thx for your time.

Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!