The pooled covariance matrix of TRAINING must be positive definite.
    10 views (last 30 days)
  
       Show older comments
    
clc
clear all
load featurs_T
load featurs_S
load Group_Train
load Group_Test
cv_x=cov(Feat1);
[V,D] = eig(cv_x);
d=diag(D);
d=d(end:-1:1);
sm_d=cumsum(d) /sum(d);
idx=find(sm_d>0.99);
T=[V(:,end:-1:idx(1))]';
new_feat1=T*Feat1';
%TrainingSet= new_feat1';
new_feat2=T*Feat2';
%TestSet= new_feat2';
TrainingSet = new_feat1'; 
TestSet = new_feat2';
Group_Train1 = Group_Train1';
Group_Test1 = Group_Test1';
%------------------------
% result1= multisvm(TrainingSet,Group_Train1,TestSet,Group_Test1);
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
testresult = result1;
Accuracy = mean(Group_Test1==result) * 100;
fprintf('Accuracy = %.2f\n', Accuracy);
fprintf('error rate = %.2f\n ', mean(result ~= Group_Test1 ) * 100);
Error using classify (line 233)
The pooled covariance matrix of TRAINING must be positive definite.
Error in HOG2 (line 31)
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
5 Comments
Accepted Answer
  Matt J
      
      
 on 23 Jan 2022
        I suggest you calculate the pooled covariance matrix and verify whether the error message is accurate.
More Answers (0)
See Also
Categories
				Find more on Deep Learning Toolbox in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


