reason of getting zero answer
1 view (last 30 days)
Show older comments
I write below code for solve diffraction integral by trapz order but in final I have got zero answer for u2. what is problem? please help to find defect.
%gaussian propagation%
clear
clc
r_1=linspace(-1,1,50);
r_2=linspace(-1,1,50);
[r1,r2]=meshgrid(linspace(-1,1,100));
z2=4.2; % is the axial distance from the beam's narrowest point
z1=1;
L=z2-z1;
wvl=500; % is wavelength
k=2*pi./wvl;
w0=sqrt(wvl.*z1./pi); % is the waist size
w1=w0.*sqrt(1+wvl.*z1./pi.*w0.^2); % is the radius at which the field amplitude and intensity drop to 1/e and 1/e2 of...
%...their axial values, respectively,
w2=w0.*sqrt(1+wvl.*z2./pi.*w0.^2);
R1=z1.*(1+(pi.*w0.^2./wvl.*z1).^2); % is the radius of curvature of the beam's wavefronts
R2=z2.*(1+(pi.*w0.^2./wvl.*z2).^2);
u1=w0./w1.*exp((-1./w1.^2+1i.*pi./wvl.*R1).*(r1.^2+r2.^2)-1i.*k.*z1); % mathematical form of Gaussian beam
figure(1)
mesh(r1,r2,real(u1))
K=zeros(1,length(r1));
u1=zeros(1,length(r1));
u2=zeros(1,length(r1));
for nn=1:50
for mm=1:50
r1=linspace(0,1,length(r1));
r2=linspace(0,1,length(r1));
K=exp(-1i.*pi.*(r1(nn).^2+z1.^2+r2(mm).^2+z1.^2-2.*(r1(nn).*r2(mm)+z1.*z2))./(wvl.*L)-1i.*k.*L);
u1=w0./w1.*exp((-1./w1.^2+1i.*pi./wvl.*R1).*(r1(nn).^2+r2(mm).^2)-1i.*k.*z1);
u2(nn,mm)=trapz(K.*u1);
end
end
2 Comments
Answers (1)
the cyclist
on 11 Nov 2014
I have not tried to fully understand your code, but the specific reason that u2 is all zeros is that when you calculate
u2(nn,mm)=trapz(K.*u1)
both K and u1 are scalars, and the numerically evaluated integral of a scalar is zero.
5 Comments
the cyclist
on 12 Nov 2014
The following will run to completion. It seems that it might do what you intend, but I am not certain of that.
clear
clc
r_1=linspace(-1,1,50);
r_2=linspace(-1,1,50);
[r1,r2]=meshgrid(linspace(-1,1,100));
z2=4.2; % is the axial distance from the beam's narrowest point
z1=1;
L=z2-z1;
wvl=500; % is wavelength
k=2*pi./wvl;
w0=sqrt(wvl.*z1./pi); % is the waist size
w1=w0.*sqrt(1+wvl.*z1./pi.*w0.^2); % is the radius at which the field amplitude and intensity drop to 1/e and 1/e2 of...
%...their axial values, respectively,
w2=w0.*sqrt(1+wvl.*z2./pi.*w0.^2);
R1=z1.*(1+(pi.*w0.^2./wvl.*z1).^2); % is the radius of curvature of the beam's wavefronts
R2=z2.*(1+(pi.*w0.^2./wvl.*z2).^2);
u1=w0./w1.*exp((-1./w1.^2+1i.*pi./wvl.*R1).*(r1.^2+r2.^2)-1i.*k.*z1); % mathematical form of Gaussian beam
figure(1)
mesh(r1,r2,real(u1))
K=zeros(1,length(r1));
u1=zeros(1,length(r1));
u2=zeros(1,length(r1));
r1=linspace(0,1,length(r1));
r2=linspace(0,1,length(r1));
for nn=1:50
for mm=1:50
K(nn,mm)=exp(-1i.*pi.*(r1(nn).^2+z1.^2+r2(mm).^2+z1.^2-2.*(r1(nn).*r2(mm)+z1.*z2))./(wvl.*L)-1i.*k.*L);
u1(nn,mm)=w0./w1.*exp((-1./w1.^2+1i.*pi./wvl.*R1).*(r1(nn).^2+r2(mm).^2)-1i.*k.*z1);
end
u2(nn)=trapz(r1,K(nn,:).*u1(nn,:));
end
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!