Attempting to correctly code the validation and testing data into network
1 view (last 30 days)
Show older comments
clc; clear all; close all;
%Import/Upload data
load generated_data.mat
%transposing glucose data
X1_T = X1';
%transposing insulin data
X2_T = X2';
%Separating data in training, validation and testing data
%Shuffling data
rand('seed', 0)
ind = randperm(size(X1_T, 1));
X1_T = X1_T(ind, :);
Y1 = Y1(ind);
%-----------------------------------------------------------------------
X1_train = X1_T;
%Partioning data for training
train_X1 = X1_train(1:120,:);
train_Y1 = Y1(1:120);
%DataParts = zeros(size(Train_inputX1,1), size(Train_inputX1,2),1,2); %(4500,400,1,2)
%DataParts(:,:,:,1) = real(cell2mat(Train_inputX1));
%DataParts(:,:,:,2) = imag(cell2mat(Train_inputX1)) ;
XTrain=(reshape(train_X1, [120,1,1,2289])); %Train data
%Separating and partioning for validation data
val_X1 = X1_train(121:150,:);
val_Y1 = Y1(121:150);
XVal=(reshape(val_X1', [2289,1,1,30])); %Train data
%val_Y1 = Y1(121:150);
%XVal=(reshape(val_X1, [30,1,1,2289])); %Train data
%Separating and partioning for test data
test_X1 = X1_train(151:180,:);
%test_Y1 = Y1(151:180);
%XTest=(reshape(test_X1', [30,1,1,2289]));
%Xtest=(reshape(test_X1, [120,1,1,2289])); %Train data
%Separating data in training, validation and testing data
%X2_train = X2_T;
%Partioning data for training
%train_X2 = X2_train(1:120,:);
%Separating and partioning for validation data
%val_X2 = X2_train(121:150,:);
%Separating and partioning for test data
%test_X2 = X2_train(151:180,:);
%The number of features chosen to be two representing both glucose and
%insulin
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 180;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',60, ...
'GradientThreshold',2, ...
'Verbose',false, ...
'ValidationData',{XVal,categorical(val_Y1)},...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'Plots','training-progress');
net = trainNetwork(X1_train',categorical(Y1),layers,options);
0 Comments
Answers (1)
yanqi liu
on 16 Dec 2021
clc; clear all; close all;
load generated_data.mat
% 2289*180
% 6 classes
X1_T = X1';
X2_T = X2';
rand('seed', 0)
ind = randperm(size(X1_T, 1));
X1_T = X1_T(ind, :);
Y1 = categorical(Y1(ind));
% Split Data
X1_train = X1_T;
train_X1 = X1_train(1:120,:);
train_Y1 = Y1(1:120);
% Data Batch
XTrain=(reshape(train_X1', [2289,120]));
val_X1 = X1_train(121:150,:);
val_Y1 = Y1(121:150);
XVal=(reshape(val_X1', [2289,30]));
test_X1 = X1_train(151:180,:);
test_Y1 = Y1(151:180);
XTest=(reshape(test_X1', [2289,30]));
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 180;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
bilstmLayer(numHiddenUnits,'OutputMode','sequence')
dropoutLayer(0.1)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',2000, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{XVal, val_Y1},...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'Plots','training-progress');
% Train
net = trainNetwork(XTrain,train_Y1,layers,options);
% Test
miniBatchSize = 27;
YPred = classify(net,XTest, ...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment', 'cpu');
acc = mean(YPred(:) == categorical(test_Y1(:)))
figure
t = confusionchart(categorical(test_Y1(:)),YPred(:));
0 Comments
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!