PCA values

1 view (last 30 days)
Raviteja
Raviteja on 17 Sep 2011
Edited: Mouse on 8 Nov 2021
I have written following code to learn about PCA.
clear all
clc
load hald
hald=ingredients;
[m n]=size(hald);
mu=mean(hald);
mumat=repmat(mu,[m 1]);
hald_new=hald-mumat;
cov_mat=cov(hald_new);
[EVec EVal]=eig(cov_mat);
[sq iq]=sort(diag(EVal)','descend');
for i=1:length(iq)
EVec_sort(:,i)=EVec(:,iq(i));
end
EVal_sort=sq;
pca_data=EVec_sort'*hald_new';
And also I compared my results with matlab princomp() function. Results are like this..
My result
>> pca_data'
ans =
36.8218 6.8709 -4.5909 0.3967
29.6073 -4.6109 -2.2476 -0.3958
-12.9818 4.2049 0.9022 -1.1261
23.7147 6.6341 1.8547 -0.3786
-0.5532 4.4617 -6.0874 0.1424
-10.8125 3.6466 0.9130 -0.1350
-32.5882 -8.9798 -1.6063 0.0818
22.6064 -10.7259 3.2365 0.3243
-9.2626 -8.9854 -0.0169 -0.5437
-3.2840 14.1573 7.0465 0.3405
9.2200 -12.3861 3.4283 0.4352
-25.5849 2.7817 -0.3867 0.4468
-26.9032 2.9310 -2.4455 0.4116
Matlab result:
>> [pc,score,latent,tsquare] = princomp(ingredients);
>> score
score =
36.8218 -6.8709 -4.5909 0.3967
29.6073 4.6109 -2.2476 -0.3958
-12.9818 -4.2049 0.9022 -1.1261
23.7147 -6.6341 1.8547 -0.3786
-0.5532 -4.4617 -6.0874 0.1424
-10.8125 -3.6466 0.9130 -0.1350
-32.5882 8.9798 -1.6063 0.0818
22.6064 10.7259 3.2365 0.3243
-9.2626 8.9854 -0.0169 -0.5437
-3.2840 -14.1573 7.0465 0.3405
9.2200 12.3861 3.4283 0.4352
-25.5849 -2.7817 -0.3867 0.4468
-26.9032 -2.9310 -2.4455 0.4116
Why the second column giving wrong result (in signs)?
  1 Comment
Debarshi Chakraborty
Debarshi Chakraborty on 21 Jan 2020
how to plot this data?

Sign in to comment.

Accepted Answer

Andrew Newell
Andrew Newell on 17 Sep 2011
Eigenvectors are a little arbitrary. If A is a matrix and b is one of its eigenvectors, then so is b multiplied by any scalar. In particular, if
A*b = e*b
for some eigenvalue e, then
A*(-b) = e*(-b).
  3 Comments
Andrew Newell
Andrew Newell on 17 Sep 2011
Yes.
Mouse
Mouse on 8 Nov 2021
Edited: Mouse on 8 Nov 2021
Is "princomp" removed in Version R2021a?
I would say yes, it is removed and replaced by "pca"

Sign in to comment.

More Answers (0)

Categories

Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!