Solving SDP problem with cxv - difference between MATLAB and R solution
15 views (last 30 days)
Show older comments
I solved the following Linear Matrix Inequality (LMI) problem using cvx in Matlab:
Lhs = [19.467593196, 1.82394007, 0.1625838, 0.01685267, 0.002495194;
1.823940068, 1.78664305, 0.9845668, 0.32951706, 0.010431878;
0.162583843, 0.98456679, 1.2333818, 0.92276329, 0.132643463;
0.016852668, 0.32951706, 0.9227633, 1.55698000, 0.848190932;
0.002495194, 0.01043188, 0.1326435, 0.84819093, 0.638889503];
S = [0.001, -0.001, 0, 0, 0;
-0.001, 0.001, 0, 0, 0;
0, 0, 0, 0, 0;
0, 0, 0, 0.001 -0.001;
0, 0, 0, -0.001, 0.001];
cvx_begin sdp
variable t
minimize t
Lhs+t*S/2 >= 0;
cvx_end
where Lhs and S are appropriate matrices. The result makes sense.
I need to solve the same problem in R. As far as I understood, it can't be expressed as a LMI. Thus, I exploited the dual formulation to write the problem as
Lhs = matrix(c(19.467593196, 1.82394007, 0.1625838, 0.01685267, 0.002495194,
1.823940068, 1.78664305, 0.9845668, 0.32951706, 0.010431878,
0.162583843, 0.98456679, 1.2333818, 0.92276329, 0.132643463,
0.016852668, 0.32951706, 0.9227633, 1.55698000, 0.848190932,
0.002495194, 0.01043188, 0.1326435, 0.84819093, 0.638889503), ncol = 5, byrow = T)
S = matrix(c(0.001, -0.001, 0, 0, 0,
-0.001, 0.001, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0.001, -0.001,
0, 0, 0, -0.001, 0.001), ncol = 5, byrow = T)
X = Variable(k, k, PSD = T)
constr = list(matrix_trace(S%*%X) == 1,
X >= 0)
prob = Problem(Maximize(-matrix_trace(Lhs%*%X)), constr)
Unfortunately, the result is totally wrong. Where is the mistake?
0 Comments
Answers (0)
See Also
Categories
Find more on Linear Model Identification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!