Calculate the Median of the results from 100 Simulations

2 views (last 30 days)
Hi. I have a code where I am running a Random Forest regression. I am running it 100 times. However, I am having difficulty calculating the median of the 100 trials.
The result I am looking for is located in the variable designated "impOOB".
For each run, there should be values in impOOB variable for 5 columns. For instance:
0.427417559041683 0.00894308188405568 0.141297948087486 0.222153283589539 0.200188127397237
For 100 runs of column 1, I need the median. The same for column 2, and so forth.
My code is as follows:
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
impOOB = impOOB./sum(impOOB)
result(k) =
end
I'll attach the files as well. I appreciate very much any help with this.

Accepted Answer

Matt J
Matt J on 14 Oct 2021
Edited: Matt J on 14 Oct 2021
impOOB=rand(100,5)
impOOB = 100×5
0.7604 0.5152 0.7196 0.2418 0.5420 0.8386 0.3787 0.4701 0.4692 0.7572 0.9929 0.0561 0.2087 0.1176 0.9434 0.7796 0.2491 0.1337 0.1499 0.9048 0.3695 0.1500 0.6826 0.4575 0.4751 0.6069 0.1207 0.8111 0.5832 0.3273 0.9885 0.2647 0.1840 0.9606 0.0610 0.1243 0.3249 0.5171 0.1649 0.9400 0.7085 0.7869 0.5282 0.5472 0.4634 0.7656 0.4034 0.7932 0.8618 0.5136
median(impOOB,1)
ans = 1×5
0.4813 0.4997 0.4696 0.4513 0.5518
  3 Comments
Matt J
Matt J on 14 Oct 2021
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
result(k,:) = impOOB./sum(impOOB);
end
median(result,1)

Sign in to comment.

More Answers (0)

Categories

Find more on Just for fun in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!