Discrete Laplacian on a triangle mesh
8 views (last 30 days)
Show older comments
Perry Mason
on 30 Sep 2021
Commented: Alec Jacobson
on 4 Oct 2021
Hi everybody,
I have a triangle mesh with N nodes and T triangles given by the following matrices
n(N,3): which defines the nodes coordinates
t(T,3): which is the connectivity matrix
If I note L as the Discrete Laplacian on my triangle mesh, and I code this
function1= n(:,1).^2;
function2= L*function1;
function2 should be an array of all twos, shouldn't it?
Unfortunately, although I have found some Discrete Laplacian matlab functions in Matlabcentral none of them retrieve a result where function2 should be an array of all twos.
I would appreciate any tip in this matter about how to compute the Discrete Laplacian
Thanks in advance.
Cheers.
0 Comments
Accepted Answer
Alec Jacobson
on 30 Sep 2021
L discretizes the integrated discrete Laplacian in the sense that:
x' * L * x discretizes Dirichlet energy: ∫ ‖∇x‖² dx. Via Green's idenity this energy is related to the Laplacian as:
∫ ‖∇x‖² dx = -∫ x∆x dx + boundary terms
So, there are at least 3 reasons you won't get all twos:
1) If n,t is a curved surface (as in, all vertices are not on the same plane) then L also encodes the non-Euclidean metric,
2) if n,t has a boundary, then for vertices along the boundary you'll get the integrate Laplacian + boundary terms
3) L computes integrated values, to convert to intergral average, pointwise values you can "unintegrate" (i.e., divide by local area) by multiplying with the inverse of the mass matrix: M \ L * x
0 Comments
More Answers (1)
Perry Mason
on 4 Oct 2021
1 Comment
Alec Jacobson
on 4 Oct 2021
See #1 in the answer above. If your surface is curved, then you don't have a flat metric and won't get just 2s.
Try this in the Euclidean domain via:
[V,F] = create_regular_grid(10,10);
L = cotmatrix(V,F);
M = massmatrix(V,F);
M\(L*f1)
everything is 2.0 except the boundary.
See Also
Categories
Find more on Geometry and Mesh in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!