- "Validation performance has increased more than max_fail times since the last time it decreased (when using validation)."
Neural network validation checks net.TrainParam.max_fail <- is a bigger or a smaller number better?
45 views (last 30 days)
Show older comments
NightStalker
on 16 Sep 2021
Answered: pathakunta
on 26 Jan 2024
While trying to improve my neural network I wondered, whether I should increase or decrease
TrainParam.max_fail
(default value is 6)
Training stops when any of these conditions occurs:
- "Validation performance has increased more than max_fail times since the last time it decreased (when using validation)."
which I interpret as: if validation error decreases more than 6 times -> early stopping
This documentary (https://de.mathworks.com/help/deeplearning/ug/improve-neural-network-generalization-and-avoid-overfitting.html) says:
When the validation error increases for a specified number of iterations (net.trainParam.max_fail), the training is stopped, and the
weights and biases at the minimum of the validation error are returned.
which I interpret as: if validation error increases more than 6 times -> early stopping
So what is the purpose of the net.TrainParam.max_fail?
____________________________________________________________________________________
Second question in the same post:
When my Trainratio/Validationratio/Testratio is 70/25/5.
After how many Train-epochs is there an Validation-Epoch?
Thank you very much in advance!
0 Comments
Accepted Answer
Anshika Chaurasia
on 8 Oct 2021
Hi,
1. Training stops when any of these conditions occurs:
In above lines, "Validation Performance" means validation error. Hence, the interpretation of above line will be:
if validation error increases more than 6 times -> early stopping
To understand the terminology refer to following documents:
2. After each training epoch validation will occur. Or, in an epoch first training will be done then validation.
More Answers (3)
pathakunta
on 26 Jan 2024
1. Training stops when any of these conditions occurs: "Validation performance has increased more than max_fail times since the last time it decreased (when using validation)." In above lines, "Validation Performance" means validation error. Hence, the interpretation of above line will be: if validation error increases more than 6 times -> early stopping To understand the terminology refer to following documents: Calculate network performance - MATLAB perform (mathworks.com) https://www.mathworks.com/help/deeplearning/ug/neural-network-object-properties.html#bss4hk6-52 2. After each training epoch validation will occur. Or, in an epoch first training will be done then validation.
0 Comments
pathakunta
on 26 Jan 2024
1. Training stops when any of these conditions occurs: "Validation performance has increased more than max_fail times since the last time it decreased (when using validation)." In above lines, "Validation Performance" means validation error. Hence, the interpretation of above line will be: if validation error increases more than 6 times -> early stopping To understand the terminology refer to following documents: Calculate network performance - MATLAB perform (mathworks.com) https://www.mathworks.com/help/deeplearning/ug/neural-network-object-properties.html#bss4hk6-52 2. After each training epoch validation will occur. Or, in an epoch first training will be done then validation.
0 Comments
pathakunta
on 26 Jan 2024
1. Training stops when any of these conditions occurs: "Validation performance has increased more than max_fail times since the last time it decreased (when using validation)." In above lines, "Validation Performance" means validation error. Hence, the interpretation of above line will be: if validation error increases more than 6 times -> early stopping To understand the terminology refer to following documents: Calculate network performance - MATLAB perform (mathworks.com) https://www.mathworks.com/help/deeplearning/ug/neural-network-object-properties.html#bss4hk6-52 2. After each training epoch validation will occur. Or, in an epoch first training will be done then validation.
0 Comments
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!