You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Cole Cole Fitting to data
20 views (last 30 days)
Show older comments
Jasmine Boparai
on 2 Sep 2021
I am having an experimental data and I want to do cole cole fitting using the equation
εr(ω) = ε' r(ω) - jε'' r(ω) = εro + Δεr/1 + (jωτ)^1-α +σs/jωε0
I am trying to do this with curve fitting toolbox, but not able to do it.
Then I want to find coefficientf from the equation.
I have attached csv file and code i was using this:
fid = fopen('Ist.csv');
out = textscan(fid,'%f %f %f', 'Headerlines', 1, 'delimiter',',');
fclose(fid);
%date = datevec(out{1});
col1 = out{1}
col2 = out{2}
Matlab form of equation:
output = e + d./((1-(j.*omega.*t).^(1-a)))+s./(j.*omega.*es);
16 Comments
John D'Errico
on 2 Sep 2021
Edited: John D'Errico
on 2 Sep 2021
It looks like as I was writing this comment, you did attach two csv files, but the rest of my comment still applies.
Can we assume that e and d are unknowns? omega? a? s? How about j? Is es one unknown, or a product of two unknowns? After all, s and e both appear to be possibly uknowns. So what is es?
Is t the independent variable, represented by what? out(1)? Or something else?
Jasmine Boparai
on 2 Sep 2021
Edited: Jasmine Boparai
on 2 Sep 2021
output = ero + d./((1-(j.*omega.*t).^(1-a)))+s./(j.*omega.*es);
output = f(omega)
ero,d,t,s,es,a are list of coefficients
output and omega are variables
omega is in data which is the first column of Ist.csv file
all coefficients are unknown.
j is imaginary.
es =8.854*10^-12 (this can be used as constant) (es is actually epsilonnot)
ero %epsilonro
d %deltaepsilonr
t %taups(ps)
s %sigmas
a %alpha
es = 8.85*10e-12
j is imaginary
Star Strider
on 2 Sep 2021
What variables are the data, what variables are known, and what variables (parameters) are to be estimated?
Is ‘j’ a variable or the imaginary operator?
.
Jasmine Boparai
on 2 Sep 2021
Edited: Jasmine Boparai
on 2 Sep 2021
So, we need to estimate ero,d,t,s,a.
'j' is an imaginary operator.
omega and es are known.
The code that I have written, it is used to extract data (first two coumnns) from ist.csv file and then I plotted them. I need to fit the equation given above to the curve I got from plotting. Also I need to find all the coefficients.
Star Strider
on 2 Sep 2021
What variables are the data to be fitted? Independent variable? Dependent variable?
Apparently ‘es’ now has a value assigned to it. What value is assigned to ω?
.
Jasmine Boparai
on 2 Sep 2021
Edited: Jasmine Boparai
on 2 Sep 2021
In ist.csv file, first column is omega and second column is output.
Firstly I am plotting a curve using data from ist.csv file. Then I am using the given equation in curve fitting app to fit equation to my data which i plotted and also want to calculate the coefficients which are unknown (ero,d,t,s,a).
And if you see my last answers, i have described all the parameters which are variable.
I think I am not completely understanding your question.
Star Strider
on 2 Sep 2021
Fitting real data to a complex model is not possible.
Jasmine Boparai
on 2 Sep 2021
is it possible to do like this:
output = real(e + d./((1-(j.*omega.*t).^(1-a)))+s./(j.*omega.*es))
Or do you suggest any other way?
Star Strider
on 2 Sep 2021
I tried with abs, not real, and could not get it to fit.
Jasmine Boparai
on 2 Sep 2021
Thanks for your patience. I will try to do it through script.
Alex Sha
on 3 Sep 2021
if taking equation as:
output = real(e + d./((1-(j.*omega.*t).^(1-a)))+s./(j.*omega.*es))
result:
Root of Mean Square Error (RMSE): 0.301453065843602
Sum of Squared Residual: 90.9648248574138
Correlation Coef. (R): 0.999593118288108
R-Square: 0.999186402128943
Parameter Best Estimate
-------------------- -------------
ero 8.667518205328
d 42.2642835242029
t -8.6912938387384E-11
a -0.493793750300934
s -1270059.74250092
parameter s can be any value, others keep stable values;

while if taking equation as:
output = abs(e + d./((1-(j.*omega.*t).^(1-a)))+s./(j.*omega.*es))
result (stable and unique):
Root of Mean Square Error (RMSE): 0.164575686925224
Sum of Squared Residual: 27.1122418836362
Correlation Coef. (R): 0.999878747426502
R-Square: 0.99975750955519
Parameter Best Estimate
-------------------- -------------
ero 7.32134313693091
d 43.9926893787809
t 9.44768896632764E-11
a -0.364142224570391
s 0.659065621688692

Jasmine Boparai
on 3 Sep 2021
Can you please share the code as well?
I will be very grateful.
Star Strider
on 3 Sep 2021
That uses different software, not MATLAB, to estimate the parameters. The code would therefore not be at all helpful unless you also have that software.
Jasmine Boparai
on 3 Sep 2021
Can you tell me the name of the software?
Jasmine Boparai
on 3 Sep 2021
As you said fitting real data to complex model is not possible, but if we have complex data, then would it be possible?
Star Strider
on 3 Sep 2021
I have no idea.
I have no idea what your data are, the rationale behind the model you are fitting, or anything else.
All I know is that I cannot get either GlobalSearch or ga to fit it.
Accepted Answer
Star Strider
on 2 Sep 2021
In electrical engineering terminology,
, where f is the frequency in Hz. I defined ω that way here.
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/727854/Ist.csv', 'VariableNamingRule','preserve')
T1 = 1001×2 table
frequency(Hz) Tr 2 Data(e')
_____________ ______________
5e+08 52.4
5.26e+08 52.8
5.52e+08 52
5.78e+08 51.7
6.04e+08 52.3
6.3e+08 52.2
6.56e+08 51.4
6.82e+08 51.6
7.08e+08 52
7.34e+08 51.5
7.6e+08 51.2
7.86e+08 51.6
8.12e+08 51.6
8.38e+08 51
8.64e+08 51.2
8.9e+08 51.4
omega = 2*pi*T1{:,1};
y = T1{:,2};
es = 8.85e-12;
output = @(ero,d,t,s,a,omega) ero + d./((1-(1j.*omega.*t).^(1-a)))+s./(1j.*omega.*es);
[B,fval] = fminsearch(@(b) norm(y - imag(output(b(1),b(2),b(3),b(4),b(5),omega))), rand(5,1)*1000)
B = 5×1
615.4022
702.8629
10.1123
-4.5173
688.4702
fval = 697.6694
result = output(B(1),B(2),B(3),B(4),B(5),omega)
result =
1.0e+03 *
1.3183 + 0.1625i
1.3183 + 0.1544i
1.3183 + 0.1472i
1.3183 + 0.1405i
1.3183 + 0.1345i
1.3183 + 0.1289i
1.3183 + 0.1238i
1.3183 + 0.1191i
1.3183 + 0.1147i
1.3183 + 0.1107i
1.3183 + 0.1069i
1.3183 + 0.1034i
1.3183 + 0.1000i
1.3183 + 0.0969i
1.3183 + 0.0940i
1.3183 + 0.0913i
1.3183 + 0.0887i
1.3183 + 0.0862i
1.3183 + 0.0839i
1.3183 + 0.0817i
1.3183 + 0.0796i
1.3183 + 0.0777i
1.3183 + 0.0758i
1.3183 + 0.0740i
1.3183 + 0.0723i
1.3183 + 0.0706i
1.3183 + 0.0691i
1.3183 + 0.0676i
1.3183 + 0.0662i
1.3183 + 0.0648i
1.3183 + 0.0635i
1.3183 + 0.0622i
1.3183 + 0.0610i
1.3183 + 0.0598i
1.3183 + 0.0587i
1.3183 + 0.0576i
1.3183 + 0.0566i
1.3183 + 0.0556i
1.3183 + 0.0546i
1.3183 + 0.0537i
1.3183 + 0.0528i
1.3183 + 0.0519i
1.3183 + 0.0510i
1.3183 + 0.0502i
1.3183 + 0.0494i
1.3183 + 0.0486i
1.3183 + 0.0479i
1.3183 + 0.0472i
1.3183 + 0.0465i
1.3183 + 0.0458i
1.3183 + 0.0451i
1.3183 + 0.0445i
1.3183 + 0.0439i
1.3183 + 0.0433i
1.3183 + 0.0427i
1.3183 + 0.0421i
1.3183 + 0.0415i
1.3183 + 0.0410i
1.3183 + 0.0405i
1.3183 + 0.0399i
1.3183 + 0.0394i
1.3183 + 0.0389i
1.3183 + 0.0385i
1.3183 + 0.0380i
1.3183 + 0.0375i
1.3183 + 0.0371i
1.3183 + 0.0367i
1.3183 + 0.0362i
1.3183 + 0.0358i
1.3183 + 0.0354i
1.3183 + 0.0350i
1.3183 + 0.0346i
1.3183 + 0.0342i
1.3183 + 0.0339i
1.3183 + 0.0335i
1.3183 + 0.0332i
1.3183 + 0.0328i
1.3183 + 0.0325i
1.3183 + 0.0321i
1.3183 + 0.0318i
1.3183 + 0.0315i
1.3183 + 0.0312i
1.3183 + 0.0309i
1.3183 + 0.0306i
1.3183 + 0.0303i
1.3183 + 0.0300i
1.3183 + 0.0297i
1.3183 + 0.0294i
1.3183 + 0.0291i
1.3183 + 0.0289i
1.3183 + 0.0286i
1.3183 + 0.0283i
1.3183 + 0.0281i
1.3183 + 0.0278i
1.3183 + 0.0276i
1.3183 + 0.0274i
1.3183 + 0.0271i
1.3183 + 0.0269i
1.3183 + 0.0267i
1.3183 + 0.0264i
1.3183 + 0.0262i
1.3183 + 0.0260i
1.3183 + 0.0258i
1.3183 + 0.0256i
1.3183 + 0.0254i
1.3183 + 0.0252i
1.3183 + 0.0249i
1.3183 + 0.0248i
1.3183 + 0.0246i
1.3183 + 0.0244i
1.3183 + 0.0242i
1.3183 + 0.0240i
1.3183 + 0.0238i
1.3183 + 0.0236i
1.3183 + 0.0235i
1.3183 + 0.0233i
1.3183 + 0.0231i
1.3183 + 0.0229i
1.3183 + 0.0228i
1.3183 + 0.0226i
1.3183 + 0.0224i
1.3183 + 0.0223i
1.3183 + 0.0221i
1.3183 + 0.0220i
1.3183 + 0.0218i
1.3183 + 0.0217i
1.3183 + 0.0215i
1.3183 + 0.0214i
1.3183 + 0.0212i
1.3183 + 0.0211i
1.3183 + 0.0209i
1.3183 + 0.0208i
1.3183 + 0.0207i
1.3183 + 0.0205i
1.3183 + 0.0204i
1.3183 + 0.0203i
1.3183 + 0.0201i
1.3183 + 0.0200i
1.3183 + 0.0199i
1.3183 + 0.0197i
1.3183 + 0.0196i
1.3183 + 0.0195i
1.3183 + 0.0194i
1.3183 + 0.0193i
1.3183 + 0.0191i
1.3183 + 0.0190i
1.3183 + 0.0189i
1.3183 + 0.0188i
1.3183 + 0.0187i
1.3183 + 0.0186i
1.3183 + 0.0185i
1.3183 + 0.0184i
1.3183 + 0.0182i
1.3183 + 0.0181i
1.3183 + 0.0180i
1.3183 + 0.0179i
1.3183 + 0.0178i
1.3183 + 0.0177i
1.3183 + 0.0176i
1.3183 + 0.0175i
1.3183 + 0.0174i
1.3183 + 0.0173i
1.3183 + 0.0172i
1.3183 + 0.0171i
1.3183 + 0.0171i
1.3183 + 0.0170i
1.3183 + 0.0169i
1.3183 + 0.0168i
1.3183 + 0.0167i
1.3183 + 0.0166i
1.3183 + 0.0165i
1.3183 + 0.0164i
1.3183 + 0.0163i
1.3183 + 0.0163i
1.3183 + 0.0162i
1.3183 + 0.0161i
1.3183 + 0.0160i
1.3183 + 0.0159i
1.3183 + 0.0158i
1.3183 + 0.0158i
1.3183 + 0.0157i
1.3183 + 0.0156i
1.3183 + 0.0155i
1.3183 + 0.0155i
1.3183 + 0.0154i
1.3183 + 0.0153i
1.3183 + 0.0152i
1.3183 + 0.0152i
1.3183 + 0.0151i
1.3183 + 0.0150i
1.3183 + 0.0149i
1.3183 + 0.0149i
1.3183 + 0.0148i
1.3183 + 0.0147i
1.3183 + 0.0147i
1.3183 + 0.0146i
1.3183 + 0.0145i
1.3183 + 0.0144i
1.3183 + 0.0144i
1.3183 + 0.0143i
1.3183 + 0.0143i
1.3183 + 0.0142i
1.3183 + 0.0141i
1.3183 + 0.0141i
1.3183 + 0.0140i
1.3183 + 0.0139i
1.3183 + 0.0139i
1.3183 + 0.0138i
1.3183 + 0.0138i
1.3183 + 0.0137i
1.3183 + 0.0136i
1.3183 + 0.0136i
1.3183 + 0.0135i
1.3183 + 0.0135i
1.3183 + 0.0134i
1.3183 + 0.0133i
1.3183 + 0.0133i
1.3183 + 0.0132i
1.3183 + 0.0132i
1.3183 + 0.0131i
1.3183 + 0.0131i
1.3183 + 0.0130i
1.3183 + 0.0130i
1.3183 + 0.0129i
1.3183 + 0.0128i
1.3183 + 0.0128i
1.3183 + 0.0127i
1.3183 + 0.0127i
1.3183 + 0.0126i
1.3183 + 0.0126i
1.3183 + 0.0125i
1.3183 + 0.0125i
1.3183 + 0.0124i
1.3183 + 0.0124i
1.3183 + 0.0123i
1.3183 + 0.0123i
1.3183 + 0.0122i
1.3183 + 0.0122i
1.3183 + 0.0121i
1.3183 + 0.0121i
1.3183 + 0.0121i
1.3183 + 0.0120i
1.3183 + 0.0120i
1.3183 + 0.0119i
1.3183 + 0.0119i
1.3183 + 0.0118i
1.3183 + 0.0118i
1.3183 + 0.0117i
1.3183 + 0.0117i
1.3183 + 0.0116i
1.3183 + 0.0116i
1.3183 + 0.0116i
1.3183 + 0.0115i
1.3183 + 0.0115i
1.3183 + 0.0114i
1.3183 + 0.0114i
1.3183 + 0.0114i
1.3183 + 0.0113i
1.3183 + 0.0113i
1.3183 + 0.0112i
1.3183 + 0.0112i
1.3183 + 0.0111i
1.3183 + 0.0111i
1.3183 + 0.0111i
1.3183 + 0.0110i
1.3183 + 0.0110i
1.3183 + 0.0110i
1.3183 + 0.0109i
1.3183 + 0.0109i
1.3183 + 0.0108i
1.3183 + 0.0108i
1.3183 + 0.0108i
1.3183 + 0.0107i
1.3183 + 0.0107i
1.3183 + 0.0107i
1.3183 + 0.0106i
1.3183 + 0.0106i
1.3183 + 0.0105i
1.3183 + 0.0105i
1.3183 + 0.0105i
1.3183 + 0.0104i
1.3183 + 0.0104i
1.3183 + 0.0104i
1.3183 + 0.0103i
1.3183 + 0.0103i
1.3183 + 0.0103i
1.3183 + 0.0102i
1.3183 + 0.0102i
1.3183 + 0.0102i
1.3183 + 0.0101i
1.3183 + 0.0101i
1.3183 + 0.0101i
1.3183 + 0.0100i
1.3183 + 0.0100i
1.3183 + 0.0100i
1.3183 + 0.0099i
1.3183 + 0.0099i
1.3183 + 0.0099i
1.3183 + 0.0098i
1.3183 + 0.0098i
1.3183 + 0.0098i
1.3183 + 0.0098i
1.3183 + 0.0097i
1.3183 + 0.0097i
1.3183 + 0.0097i
1.3183 + 0.0096i
1.3183 + 0.0096i
1.3183 + 0.0096i
1.3183 + 0.0095i
1.3183 + 0.0095i
1.3183 + 0.0095i
1.3183 + 0.0095i
1.3183 + 0.0094i
1.3183 + 0.0094i
1.3183 + 0.0094i
1.3183 + 0.0093i
1.3183 + 0.0093i
1.3183 + 0.0093i
1.3183 + 0.0093i
1.3183 + 0.0092i
1.3183 + 0.0092i
1.3183 + 0.0092i
1.3183 + 0.0092i
1.3183 + 0.0091i
1.3183 + 0.0091i
1.3183 + 0.0091i
1.3183 + 0.0091i
1.3183 + 0.0090i
1.3183 + 0.0090i
1.3183 + 0.0090i
1.3183 + 0.0089i
1.3183 + 0.0089i
1.3183 + 0.0089i
1.3183 + 0.0089i
1.3183 + 0.0088i
1.3183 + 0.0088i
1.3183 + 0.0088i
1.3183 + 0.0088i
1.3183 + 0.0087i
1.3183 + 0.0087i
1.3183 + 0.0087i
1.3183 + 0.0087i
1.3183 + 0.0086i
1.3183 + 0.0086i
1.3183 + 0.0086i
1.3183 + 0.0086i
1.3183 + 0.0086i
1.3183 + 0.0085i
1.3183 + 0.0085i
1.3183 + 0.0085i
1.3183 + 0.0085i
1.3183 + 0.0084i
1.3183 + 0.0084i
1.3183 + 0.0084i
1.3183 + 0.0084i
1.3183 + 0.0083i
1.3183 + 0.0083i
1.3183 + 0.0083i
1.3183 + 0.0083i
1.3183 + 0.0083i
1.3183 + 0.0082i
1.3183 + 0.0082i
1.3183 + 0.0082i
1.3183 + 0.0082i
1.3183 + 0.0082i
1.3183 + 0.0081i
1.3183 + 0.0081i
1.3183 + 0.0081i
1.3183 + 0.0081i
1.3183 + 0.0080i
1.3183 + 0.0080i
1.3183 + 0.0080i
1.3183 + 0.0080i
1.3183 + 0.0080i
1.3183 + 0.0079i
1.3183 + 0.0079i
1.3183 + 0.0079i
1.3183 + 0.0079i
1.3183 + 0.0079i
1.3183 + 0.0078i
1.3183 + 0.0078i
1.3183 + 0.0078i
1.3183 + 0.0078i
1.3183 + 0.0078i
1.3183 + 0.0077i
1.3183 + 0.0077i
1.3183 + 0.0077i
1.3183 + 0.0077i
1.3183 + 0.0077i
1.3183 + 0.0077i
1.3183 + 0.0076i
1.3183 + 0.0076i
1.3183 + 0.0076i
1.3183 + 0.0076i
1.3183 + 0.0076i
1.3183 + 0.0075i
1.3183 + 0.0075i
1.3183 + 0.0075i
1.3183 + 0.0075i
1.3183 + 0.0075i
1.3183 + 0.0075i
1.3183 + 0.0074i
1.3183 + 0.0074i
1.3183 + 0.0074i
1.3183 + 0.0074i
1.3183 + 0.0074i
1.3183 + 0.0073i
1.3183 + 0.0073i
1.3183 + 0.0073i
1.3183 + 0.0073i
1.3183 + 0.0073i
1.3183 + 0.0073i
1.3183 + 0.0072i
1.3183 + 0.0072i
1.3183 + 0.0072i
1.3183 + 0.0072i
1.3183 + 0.0072i
1.3183 + 0.0072i
1.3183 + 0.0071i
1.3183 + 0.0071i
1.3183 + 0.0071i
1.3183 + 0.0071i
1.3183 + 0.0071i
1.3183 + 0.0071i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0070i
1.3183 + 0.0069i
1.3183 + 0.0069i
1.3183 + 0.0069i
1.3183 + 0.0069i
1.3183 + 0.0069i
1.3183 + 0.0069i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0068i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0067i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0066i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0065i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0064i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0063i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0062i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0061i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0060i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0059i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0058i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0057i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0056i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0055i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0054i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0053i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0052i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0051i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0050i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0049i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0048i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0047i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0046i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0045i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0044i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0043i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0042i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0041i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0040i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0039i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0038i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0037i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0036i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0035i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0034i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0033i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0032i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
1.3183 + 0.0031i
figure
plot(omega, y, '.')
hold on
plot(omega, imag(result), '-r')
hold off
grid
xlabel('\omega')
ylabel('Something')
legend('Data','Fit', 'Location','best')

The imaginary result appears to be the most appropriate fit, since the real result is a straight line, and the abs result is not much better. Regardless, the function and initial parameter estimates need to be examined closely to be certain that they actually describe the data. Other solvers (such as lsqcurvefit) might be more appropriate here. I use fminsearch because everyone has it.
.
8 Comments
Jasmine Boparai
on 2 Sep 2021
i am very very grateful to you, you worked so hard for me.
Yes you are right, in the papers that I study, they used linear square fit and levenberg-marquardt algorithm.
Moreover the equation, I have given to you, they calculated coeffcients for it. For eg. I have attached the picture.
I appreciate your effort in doing this, this will be helpful to me.
Star Strider
on 2 Sep 2021
If you already have the estimated parameters, then just use them.
.
Jasmine Boparai
on 3 Sep 2021
Sorry to bother you again,
I want to do this:
If you can help me with this
Star Strider
on 3 Sep 2021
I cannot help any more than I already have.
I even tried GlobalSearch on this and could not get a good fit, regardless of fitting the real, imag or abs values of the function to the data.
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/727854/Ist.csv', 'VariableNamingRule','preserve');
omega = 2*pi*T1{:,1};
y = T1{:,2};
es = 8.85e-12;
output = @(ero,d,t,s,a,omega) ero + d./((1-(1j.*omega.*t).^(1-a)))+s./(1j.*omega.*es);
fitfcn = @(b) norm(y - abs(output(b(1),b(2),b(3),b(4),b(5),omega)));
B0 = randn(5,1)*10000;
problem = createOptimProblem('fmincon', 'x0',B0, 'objective',fitfcn);
gs = GlobalSearch('PlotFcns',@gsplotbestf);
[B,fval] = run(gs,problem)
B(:)
result = output(B(1),B(2),B(3),B(4),B(5),omega);
figure
plot(omega, y, '.')
hold on
plot(omega, real(result), '-r')
plot(omega, imag(result), '--r')
plot(omega, abs(result), '-g')
hold off
grid
xlabel('\omega')
ylabel('Something')
legend('Data','Fit', 'Location','best')
The model does not describe the data, so any further efforts to fit this are likely not worthwhile.
Stopping here.
Good luck!
.
Star Strider
on 3 Sep 2021
Attempting the fit using the genetic algorithm —
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/727854/Ist.csv', 'VariableNamingRule','preserve');
omega = 2*pi*T1{:,1};
y = T1{:,2};
es = 8.85e-12;
outputfcn = @(ero,d,t,s,a,omega) ero + d./((1-(1j.*omega.*t).^(1-a)))+s./(1j.*omega.*es);
ftns = @(b) norm(y - real(outputfcn(b(1),b(2),b(3),b(4),b(5),omega)));
PopSz = 50;
Parms = 5;
opts = optimoptions('ga', 'PopulationSize',PopSz, 'InitialPopulationMatrix',randi(1E+4,PopSz,Parms)*1E-3, 'MaxGenerations',2E3); %, 'PlotFcn',@gaplotbestf, 'PlotInterval',1);
[theta,fval,exitflag,output] = ga(ftns, Parms, [],[],[],[],zeros(Parms,1),Inf(Parms,1),[],[],opts)
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.
theta = 1×5
0.0001 18.6955 0.0001 11.3390 1.0617
fval = 303.9269
exitflag = 1
output = struct with fields:
problemtype: 'boundconstraints'
rngstate: [1×1 struct]
generations: 1119
funccount: 52646
message: 'Optimization terminated: average change in the fitness value less than options.FunctionTolerance.'
maxconstraint: 0
hybridflag: []
format long
B = theta(:)
B = 5×1
0.000082602500916
18.695516696453094
0.000073242187500
11.338973423600198
1.061712076544762
format short
result = outputfcn(B(1),B(2),B(3),B(4),B(5),omega);
figure
plot(omega, y, '.')
hold on
plot(omega, real(result), '-r')
% plot(omega, imag(result), '--r')
% plot(omega, abs(result), '-g')
hold off
grid
xlabel('\omega')
ylabel('Something')
legend('Data','Fit Real', 'Location','best')

.
Jasmine Boparai
on 3 Sep 2021
Thank you for all your help. I really appreciate. Thank you once again.
Star Strider
on 3 Sep 2021
My pleasure!
Alex Sha
on 4 Sep 2021
Edited: Alex Sha
on 4 Sep 2021
Hi, Jasmine, the results provided above are obtained by one other package other than Matlab, the code looks simple like:
Constant es = 8.85e-12;
ComplexStr = j;
Variable omega,y[realPart];
Function y = real(e + d/((1-(j*omega*t)^(1-a)))+s/(j*omega*es));
DataFile "Sheet1[A2:B1002]";
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)