Zero-weights initialization in feedforward network
6 views (last 30 days)
Show older comments
Hello everybody, i've got a problem by programming a neural network.
r=xlsread('Juni_Test_Korrelation');
u=r(2:31,3);
u1=u';
net.inputweights{1,1}.initFcn='rands';
net.biases{1}.initFcn='rands';
net=init(net)
net.IW{1,1}
net.b{1}
net=newff(minmax(u1),[5,1],{'tansig','purelin'},'trainlm');
net.trainParam.show = 50;
net.trainParam.lr = 0.09;
net.trainParam.epochs = 120;
net.trainParam.goal = 1;
At the beginning i set the initFcn for the weights and biases to "random". I init the net after this and want to have a look at the weights and biases but i always get the same values. The only this that is different is a "minus" coming randomly in front of the values. So i get this values for the weights
-0.0319
-0.0319
0.0319
-0.0319
0.0319
and these for the biases
15.8047
-12.3047
8.8047
5.3047
-1.8047
and this everytime. Even if i set the initFcn to "initzero" the weights and biases remain the same. So i dont get any reproducable conditions. Can pls someone tell me what to do, so i cant get rather constant values for initialization or just zeros? (I know, i could write the values for weights and biases manuel like this net.IW{1,1}=[0;0;...] but this will take to long for this matrices)
Thx for any helpfull advice
0 Comments
Accepted Answer
Greg Heath
on 22 Dec 2013
Edited: Greg Heath
on 22 Dec 2013
You have to define a net via net = newff before you can assign any properties or values.
With OBSOLETE functions like newff, the nets are automatically initialized with random weights.
In order to get a different set of initial weights, initialize the RNG, e.g.,
rng(0)
For details see
help rng
doc rng
Also see some of my code examples. Search NEWSGROUP and ANSWERS using
greg newff rng
Hope this helps.
Thank you for formally accepting my answer
Greg
1 Comment
Greg Heath
on 22 Dec 2013
I recommend using all of the defaults except the number of hidden nodes. See
help newff
doc newff
for the basic examples.
More Answers (1)
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!