Problem with solving a quadratic equation

3 views (last 30 days)
Hello everybody!:)
I would need some help in solving a quadratic equation, where I have to find the two solutions for the variable "z" in function of many parameters
the equation is pretty long and I did the following steps:
syms d N m h b c A U R P k y z
I = ((d+1)/d)*z^(1/d)*N^(1/d)*b-3*c*z^2-U*A*h^k+P*h+R*A-m-h*P^(1+y); (I is the long euqation)
solve(I)
; the answer I got was:
ans =
log(-(m - P*h + 3*c*z^2 - A*R + A*U*h^k - (N^(1/d)*b*z^(1/d)*(d + 1))/d)/h)/log(P) - 1
Now, are the two solutions coincident? (I do not understand why I only got one of them)
But, main issue, how come I have the variable (z) in the root???? It should not be there!
Maybe I did some mistake..I don't know:/ Any help would be really appreciated!
I apologize if maybe this looks stupid but I am a beginner with matlab
Thank you!
Kodi

Accepted Answer

Walter Roberson
Walter Roberson on 15 Dec 2013
Edited: Walter Roberson on 15 Dec 2013
You did not specify which variable to solve for, so it picked "y".
Note: because of the z^(1/d) term, the expression is not quadratic in z.

More Answers (2)

Kodi
Kodi on 15 Dec 2013
Hi Walter, thank you for your kind answer!
Yes, it is not properly quadratic (it's of second degree).
Could you please tell me how can I specify to solve it for z?
Thank you very much!
  4 Comments
Kodi
Kodi on 15 Dec 2013
because when I type "Solve(I,z)" it gives me as answer [empty sym] :/
Walter Roberson
Walter Roberson on 15 Dec 2013
You can do the solve(). It will return a form involving RootOf(), which the symbolic toolbox knows how to reason about. RootOf(f(x),x) means "the set of values, x, such that f(x) is 0".
When you eventually substitute in enough actual values for your parameters, the Symbolic Toolbox is sometimes able to break down the expression into closed form solutions. When all parameters have been given values, the Symbolic Toolbox is able to find numeric solutions, if you use vpa() or double(). However, the Symbolic Toolbox is often unable to find all solutions in such situations; in some cases it is not able to find any numeric solutions at all even though real-valued solutions exist.

Sign in to comment.


Kodi
Kodi on 15 Dec 2013
Thank you very much!
Only, I think I'm doing some typing mistakes as I can't obtain the roots..
If I do not bother you, could you please write me all the passages? (I think it's very quick)
Thank you so much!
  4 Comments
Walter Roberson
Walter Roberson on 16 Dec 2013
Then you will need to work numerically, which is not unexpected. Use fsolve or something like that.
Define values for all of your variables except z. Then
initial_guess = 1; %why not
fun = @(z) ((d+1)/d)*z^(1/d)*N^(1/d)*b-3*c*z^2-U*A*h^k+P*h+R*A-m-h*P^(1+y);
approximate_z = fsolve(fun, initial_guess);

Sign in to comment.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!