I have x and y data, How can I do linear fit to the data, find out c of linear fit line and slope with respect to y=m*x ?

27 views (last 30 days)
I have x and y data, How can I do linear fit to the data, find out c of linear fit line and slope with respect to y=m*x ?

Answers (2)

Image Analyst
Image Analyst on 8 Dec 2013
Edited: Image Analyst on 8 Dec 2013
See my demo. The main lines to focus on are
linearCoefficients = polyfit(x, y, 1)
yFit = polyval(linearCoefficients, xFit);
Here's the demo.
% Demo to illustrate how to use the polyfit routine to fit data to a polynomial
% and to use polyval() to get estimated (fitted) data from the coefficients that polyfit() returns.
% Demo first uses a linear fit, then uses a cubic fit.
% Initialization steps.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
%============= LINEAR FIT ===================================
x = linspace(-10, 10, 20); % Make 20 samples along the x axis
% Linear relation, with noise
slope = 1.5;
intercept = -1;
noiseAmplitude = 15;
y = slope .* x + intercept + noiseAmplitude * rand(1, length(x));
% Plot the training set of data.
subplot(2, 1, 1);
plot(x, y, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
grid on;
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
title('Linear Fit', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off')
% Do the regression with polyfit
linearCoefficients = polyfit(x, y, 1)
% The x coefficient, slope, is coefficients(1).
% The constant, the intercept, is coefficients(2).
% Make fit. It does NOT need to have the same
% number of elements as your training set,
% or the same range, though it could if you want.
% Make 300 fitted samples going from -15 to +20.
xFit = linspace(-15, 20, 500);
% Get the estimated values with polyval()
yFit = polyval(linearCoefficients, xFit);
% Plot the fit
hold on;
plot(xFit, yFit, 'b', 'LineWidth', 2);
legend('Training Set', 'Fit', 'Location', 'Northwest');
%============= CUBIC FIT ===================================
x = linspace(-10, 10, 20); % Make 20 samples along the x axis
% Cubic relation, with noise
c1 = 1;
c2 = 2;
c3 = -10;
c4 = 4;
noiseAmplitude = 500;
y = c1 .* x .^3 + c2 .* x .^2 + c3 .* x + c4 + noiseAmplitude * rand(1, length(x));
% Plot the training set of data.
subplot(2, 1, 2);
plot(x, y, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
grid on;
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
title('Cubic Fit', 'FontSize', fontSize);
% Do the regression with polyfit
cubicCefficients = polyfit(x, y, 3)
% The x coefficient, slope, is coefficients(1).
% The constant, the intercept, is coefficients(2).
% Make fit. It does NOT need to have the same
% number of elements as your training set,
% or the same range, though it could if you want.
% Make 300 fitted samples going from -13 to +12.
xFit = linspace(-13, 12, 500);
% Get the estimated values with polyval()
yFit = polyval(cubicCefficients, xFit);
% Plot the fit
hold on;
plot(xFit, yFit, 'b', 'LineWidth', 2);
grid on;
legend('Training Set', 'Fit', 'Location', 'Northwest');

sixwwwwww
sixwwwwww on 8 Dec 2013
If you are given values of x and y and both x and y hase same number of elements in them then you can compute m and c as follow:
fitvars = polyfit(x, y, 1);
m = fitvars(1);
c = fitvars(2);
If you don't have linear line then you can use higher values then 1 in the first line of code. I hope it helps. Good luck!

Categories

Find more on Line Plots in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!