# jacobiSC

Jacobi SC elliptic function

## Description

example

jacobiSC(u,m) returns the Jacobi SC Elliptic Function of u and m. If u or m is an array, then jacobiSC acts element-wise.

## Examples

collapse all

jacobiSC(2,1)
ans =
3.6269

Call jacobiSC on array inputs. jacobiSC acts element-wise when u or m is an array.

jacobiSC([2 1 -3],[1 2 3])
ans =
3.6269    0.9077    0.7071

Convert numeric input to symbolic form using sym, and find the Jacobi SC elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiSC returns exact symbolic output.

jacobiSC(sym(2),sym(1))
ans =
sinh(2)

Show that for other values of u or m, jacobiSC returns an unevaluated function call.

jacobiSC(sym(2),sym(3))
ans =
jacobiSC(2, 3)

For symbolic variables or expressions, jacobiSC returns the unevaluated function call.

syms x y
f = jacobiSC(x,y)
f =
jacobiSC(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiSC(3, 5)
fVal = double(f)
fVal =
0.0312

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.031159894327171581127518352857409

Plot the Jacobi SC elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSC(u,m);
fcontour(f,'Fill','on')
title('Jacobi SC Elliptic Function')
xlabel('u')
ylabel('m')

## Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

collapse all

### Jacobi SC Elliptic Function

The Jacobi SC elliptic function is

sc(u,m) = sn(u,m)/cn(u,m)

where sn and cn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## Version History

Introduced in R2017b