addMetrics
Description
rocmetrics
computes the
false positive rates (FPR), true positive rates (TPR), and additional metrics specified by
the AdditionalMetrics
name-value argument. After creating a rocmetrics
object, you can
compute additional classification performance metrics by using the
addMetrics
function.
computes additional classification performance metrics specified in
UpdatedROCObj
= addMetrics(rocObj
,metrics
)metrics
using the classification model information stored in the
rocmetrics
object
rocObj
.
UpdatedROCObj
contains all the information in
rocObj
plus additional performance metrics computed by
addMetrics
. The function attaches the additional computed metrics
(metrics
) as new variables in the table of the Metrics
property.
If you compute confidence intervals when you create rocObj
, the
addMetrics
function computes the confidence intervals for the
additional metrics
. The new variables in the
Metrics
property contain a three-column matrix in which the first
column corresponds to the metric values, and the second and third columns correspond to the
lower and upper bounds, respectively.
Examples
Compute Additional Metrics
Compute the performance metrics (FPR, TPR, and expected cost) for a multiclass classification problem when you create a rocmetrics
object. Compute additional metrics, the positive predictive value (PPV) and the negative predictive value (NPV), and add them to the object.
Load the fisheriris
data set. The matrix meas
contains flower measurements for 150 different flowers. The vector species
lists the species for each flower. species
contains three distinct flower names.
load fisheriris
Train a classification tree that classifies observations into one of the three labels. Cross-validate the model using 10-fold cross-validation.
rng("default") % For reproducibility Mdl = fitctree(meas,species,Crossval="on");
Compute the classification scores for validation-fold observations.
[~,Scores] = kfoldPredict(Mdl); size(Scores)
ans = 1×2
150 3
Scores
is a matrix of size 150
-by-3
. The column order of Scores
follows the class order in Mdl
. Display the class order stored in Mdl.ClassNames
.
Mdl.ClassNames
ans = 3x1 cell
{'setosa' }
{'versicolor'}
{'virginica' }
Create a rocmetrics
object by using the true labels in species
and the classification scores in Scores
. Specify the column order of Scores
using Mdl.ClassNames
. By default, rocmetrics
computes the FPR and TPR. Specify AdditionalMetrics="ExpectedCost"
to compute the expected cost as well.
rocObj = rocmetrics(species,Scores,Mdl.ClassNames, ... AdditionalMetrics="ExpectedCost");
The table in the Metrics
property of rocObj
contains performance metric values for all three classes, vertically concatenated according to the class order. Find and display the rows for the second class in the table.
idx = strcmp(rocObj.Metrics.ClassName,Mdl.ClassNames(2)); rocObj.Metrics(idx,:)
ans=13×5 table
ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost
______________ _________ _________________ ________________ ____________
{'versicolor'} 1 0 0 0.074074
{'versicolor'} 1 0.01 0.7 0.023704
{'versicolor'} 0.95455 0.02 0.8 0.017778
{'versicolor'} 0.91304 0.03 0.9 0.011852
{'versicolor'} -0.2 0.04 0.9 0.013333
{'versicolor'} -0.33333 0.06 0.9 0.016296
{'versicolor'} -0.6 0.08 0.9 0.019259
{'versicolor'} -0.86957 0.12 0.92 0.023704
{'versicolor'} -0.91111 0.16 0.96 0.026667
{'versicolor'} -0.95122 0.31 0.96 0.048889
{'versicolor'} -0.95238 0.38 0.98 0.057778
{'versicolor'} -0.95349 0.44 0.98 0.066667
{'versicolor'} -1 1 1 0.14815
The table in Metrics
contains the variables for the class names, threshold, false positive rate, true positive rate, and expected cost (the additional metric).
After creating a rocmetrics
object, you can compute additional metrics using the classification model information stored in the object. Compute the PPV and NPV by using the addMetrics
function. To overwrite the input argument rocObj
, assign the output of addMetrics
to the input.
rocObj = addMetrics(rocObj,["PositivePredictiveValue","NegativePredictiveValue"]);
Display the Metrics
property.
rocObj.Metrics(idx,:)
ans=13×7 table
ClassName Threshold FalsePositiveRate TruePositiveRate ExpectedCost PositivePredictiveValue NegativePredictiveValue
______________ _________ _________________ ________________ ____________ _______________________ _______________________
{'versicolor'} 1 0 0 0.074074 NaN 0.66667
{'versicolor'} 1 0.01 0.7 0.023704 0.97222 0.86842
{'versicolor'} 0.95455 0.02 0.8 0.017778 0.95238 0.90741
{'versicolor'} 0.91304 0.03 0.9 0.011852 0.9375 0.95098
{'versicolor'} -0.2 0.04 0.9 0.013333 0.91837 0.9505
{'versicolor'} -0.33333 0.06 0.9 0.016296 0.88235 0.94949
{'versicolor'} -0.6 0.08 0.9 0.019259 0.84906 0.94845
{'versicolor'} -0.86957 0.12 0.92 0.023704 0.7931 0.95652
{'versicolor'} -0.91111 0.16 0.96 0.026667 0.75 0.97674
{'versicolor'} -0.95122 0.31 0.96 0.048889 0.60759 0.97183
{'versicolor'} -0.95238 0.38 0.98 0.057778 0.56322 0.98413
{'versicolor'} -0.95349 0.44 0.98 0.066667 0.52688 0.98246
{'versicolor'} -1 1 1 0.14815 0.33333 NaN
The table in Metrics
now includes the PositivePredictiveValue
and NegativePredictiveValue
variables in the last two columns, in the order you specified. Note that the positive predictive value (PPV = TP/(TP+FP)
) is NaN
for the reject-all threshold (largest threshold), and the negative predictive value (NPV = TN/(TN+FN)
) is NaN
for the accept-all threshold (lowest threshold). TP
, FP
, TN
, and FN
represent the number of true positives, false positives, true negatives, and false negatives, respectively.
Input Arguments
rocObj
— Object evaluating classification performance
rocmetrics
object
Object evaluating classification performance, specified as a rocmetrics
object.
metrics
— Additional model performance metrics
character vector | string array | function handle | cell array
Additional model performance metrics to compute, specified as a character vector or string
scalar of the built-in metric name, string array of names, function handle
(@metricName
), or cell array of names or function handles. A
rocmetrics
object always computes the false positive rates (FPR) and
the true positive rates (TPR) to obtain a ROC curve. Therefore, you do not have to specify
to compute FPR and TPR.
Built-in metrics — Specify one of the following built-in metric names by using a character vector or string scalar. You can specify more than one by using a string array.
Name Description "TruePositives"
or"tp"
Number of true positives (TP) "FalseNegatives"
or"fn"
Number of false negatives (FN) "FalsePositives"
or"fp"
Number of false positives (FP) "TrueNegatives"
or"tn"
Number of true negatives (TN) "SumOfTrueAndFalsePositives"
or"tp+fp"
Sum of TP and FP "RateOfPositivePredictions"
or"rpp"
Rate of positive predictions (RPP), (TP+FP)/(TP+FN+FP+TN)
"RateOfNegativePredictions"
or"rnp"
Rate of negative predictions (RNP), (TN+FN)/(TP+FN+FP+TN)
"Accuracy"
or"accu"
Accuracy, (TP+TN)/(TP+FN+FP+TN)
"FalseNegativeRate"
,"fnr"
, or"miss"
False negative rate (FNR), or miss rate, FN/(TP+FN)
"TrueNegativeRate"
,"tnr"
, or"spec"
True negative rate (TNR), or specificity, TN/(TN+FP)
"PositivePredictiveValue"
,"ppv"
,"prec"
, or"precision"
Positive predictive value (PPV), or precision, TP/(TP+FP)
"NegativePredictiveValue"
or"npv"
Negative predictive value (NPV), TN/(TN+FN)
"ExpectedCost"
or"ecost"
Expected cost,
(TP*cost(P|P)+FN*cost(N|P)+FP*cost(P|N)+TN*cost(N|N))/(TP+FN+FP+TN)
, wherecost
is a 2-by-2 misclassification cost matrix containing[0,cost(N|P);cost(P|N),0]
.cost(N|P)
is the cost of misclassifying a positive class (P
) as a negative class (N
), andcost(P|N)
is the cost of misclassifying a negative class as a positive class.The software converts the
K
-by-K
matrix specified by theCost
name-value argument ofrocmetrics
to a 2-by-2 matrix for each one-versus-all binary problem. For details, see Misclassification Cost Matrix."f1score"
F1 score, 2*TP/(2*TP+FP+FN)
You can obtain all of the previous metrics by specifying "all"
. You cannot specify"all"
in conjunction with any other metric.The software computes the scale vector using the prior class probabilities (
Prior
) and the number of classes inLabels
, and then scales the performance metrics according to this scale vector. For details, see Performance Metrics.Custom metric — Specify a custom metric by using a function handle. A custom function that returns a performance metric must have this form:
metric = customMetric(C,scale,cost)
The output argument
metric
is a scalar value.A custom metric is a function of the confusion matrix (
C
), scale vector (scale
), and cost matrix (cost
). The software finds these input values for each one-versus-all binary problem. For details, see Performance Metrics.C
is a2
-by-2
confusion matrix consisting of[TP,FN;FP,TN]
.scale
is a2
-by-1
scale vector.cost
is a2
-by-2
misclassification cost matrix.
The software does not support cross-validation for a custom metric. Instead, you can specify to use bootstrap when you create a
rocmetrics
object.
Note that the positive predictive value (PPV) is
NaN
for the reject-all threshold for which TP
= FP
= 0
, and the negative predictive value (NPV) is NaN
for the
accept-all threshold for which TN
= FN
= 0
. For more details, see Thresholds, Fixed Metric, and Fixed Metric Values.
Example: ["Accuracy","PositivePredictiveValue"]
Example: {"Accuracy",@m1,@m2}
specifies the accuracy metric and the custom
metrics m1
and m2
as additional metrics.
addMetrics
stores the custom metric values as variables named
CustomMetric1
and CustomMetric2
in the
Metrics
property.
Data Types: char
| string
| cell
| function_handle
Output Arguments
UpdatedROCObj
— Object evaluating classification performance
rocmetrics
object
Object evaluating classification performance, returned as a rocmetrics
object.
To overwrite the input argument rocObj
, assign the output of addMetrics
to rocObj
:
rocObj = addMetrics(rocObj,metrics);
Version History
Introduced in R2022aR2024b: Additional metrics available
addmetrics
has new metrics:
"f1score"
, which computes the F1 score."precision"
, which is the same as"ppv"
and"prec"
."all"
, which computes all supported metrics. You cannot use"all"
in combination with any other metric.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)