body>HTTP/1.1 200 OKServer: GlassFish Server Open Source Edition 4.1.2 X-Powered-By: Servlet/3.1 JSP/2.3 (GlassFish Server Open Source Edition 4.1.2 Java/Oracle Corporation/1.8) Set-Cookie: JSESSIONID=c400b74358b39154849fccff9f77; Path=/; Secure; HttpOnly Set-Cookie: MW_Doc_Template=WEB||||||||||; Path=/help Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Expires: Mon, 09 Nov 2020 16:52:52 EST Content-Type: text/html;charset=utf-8 Date: Sun, 05 Dec 2021 20:19:06 GMT Transfer-Encoding: chunked 10042 Chi-Square Distribution - MATLAB & Simulink - MathWorks Benelux
Main Content

# Chi-Square Distribution

Evaluate and generate random samples from chi-square distribution

Statistics and Machine Learning Toolbox™ offers multiple ways to work with the chi-square distribution.

• Use distribution-specific functions with specified distribution parameters. The distribution-specific functions can accept parameters of multiple chi-square distributions.

• Use generic distribution functions (`cdf`, `icdf`, `pdf`, `random`) with a specified distribution name (`'Chisquare'`) and parameters.

To learn about the chi-square distribution, see Chi-Square Distribution.

## Functions

expand all

 `cdf` Cumulative distribution function `icdf` Inverse cumulative distribution function `pdf` Probability density function `random` Random numbers
 `chi2cdf` Chi-square cumulative distribution function `chi2pdf` Chi-square probability density function `chi2inv` Chi-square inverse cumulative distribution function `chi2stat` Chi-square mean and variance `chi2gof` Chi-square goodness-of-fit test `chi2rnd` Chi-square random numbers

## Topics

Chi-Square Distribution

The chi-square distribution is commonly used in hypothesis testing, particularly the chi-square test for goodness of fit.

Download ebook
0