# bar

Plot magnitudes of means and standard deviations of elementary effects

## Description

plots the
means and standard deviations of elementary effects as a bar graph and returns the figure
handle `h`

= bar(`eeObj`

)`h`

. The color shading of each bar represents a histogram
representing values at different times. Darker colors mean that those values occur more
often over the whole time course. The plot shows a single dot for scalar or constant model
responses instead of a bar.

uses additional options specified by one or more name-value arguments.`h`

= bar(`eeObj`

,`Name=Value`

)

## Examples

### Perform GSA by Computing Elementary Effects

Load the Tumor Growth Model.

`sbioloadproject tumor_growth_vpop_sa.sbproj`

Get a variant with estimated parameters and the dose to apply to the model.

```
v = getvariant(m1);
d = getdose(m1,'interval_dose');
```

Get the active configset and set the tumor weight as the response.

```
cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';
```

Simulate the model and plot the tumor growth profile.

sbioplot(sbiosimulate(m1,cs,v,d));

Perform global sensitivity analysis (GSA) on the model to find the model parameters that the tumor growth is sensitive to.

First, define model parameters of interest, which are involved in the pharmacodynamics of the tumor growth. Define the model response as the tumor weight.

modelParamNames = {'L0','L1','w0','k1'}; outputName = 'tumor_weight';

Then perform GSA by computing the elementary effects using `sbioelementaryeffects`

. Use `100`

as the number of samples and set `ShowWaitBar`

to `true`

to show the simulation progress.

```
rng('default');
eeResults = sbioelementaryeffects(m1,modelParamNames,outputName,Variants=v,Doses=d,NumberSamples=100,ShowWaitbar=true);
```

Show the median model response, the simulation results, and a shaded region covering 90% of the simulation results.

plotData(eeResults,ShowMedian=true,ShowMean=false);

You can adjust the quantile region to a different percentage by specifying `Alphas `

for the lower and upper quantiles of all model responses. For instance, an `alpha`

value of 0.1 plots a shaded region between the `100*alpha`

and `100*(1-alpha)`

quantiles of all simulated model responses.

plotData(eeResults,Alphas=0.1,ShowMedian=true,ShowMean=false);

Plot the time course of the means and standard deviations of the elementary effects.

```
h = plot(eeResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];
```

The mean of effects explains whether variations in input parameter values have any effect on the tumor weight response. The standard deviation of effects explains whether the sensitivity change is dependent on the location in the parameter domain.

From the mean of effects plots, parameters `L1`

and `w0`

seem to be the most sensitive parameters to the tumor weight before the dose is applied at t = 7. But, after the dose is applied, `k1`

and `L0`

become more sensitive parameters and contribute most to the after-dosing stage of the tumor weight. The plots of standard deviation of effects show more deviations for the larger parameter values in the later stage (t > 35) than for the before-dose stage of the tumor growth.

You can also display the magnitudes of the sensitivities in a bar plot. Each color shading represents a histogram representing values at different times. Darker colors mean that those values occur more often over the whole time course.

bar(eeResults);

You can also plot the parameter grids and samples used to compute the elementary effects.

plotGrid(eeResults)

You can specify more samples to increase the accuracy of the elementary effects, but the simulation can take longer to finish. Use `addsamples`

to add more samples.

eeResults2 = addsamples(eeResults,200);

The `SimulationInfo`

property of the result object contains various information for computing the elementary effects. For instance, the model simulation data (SimData) for each simulation using a set of parameter samples is stored in the `SimData`

field of the property. This field is an array of `SimData`

objects.

eeResults2.SimulationInfo.SimData

SimBiology SimData Array : 1500-by-1 Index: Name: ModelName: DataCount: 1 - Tumor Growth Model 1 2 - Tumor Growth Model 1 3 - Tumor Growth Model 1 ... 1500 - Tumor Growth Model 1

You can find out if any model simulation failed during the computation by checking the `ValidSample`

field of `SimulationInfo`

. In this example, the field shows no failed simulation runs.

all(eeResults2.SimulationInfo.ValidSample)

`ans = `*logical*
1

You can add custom expressions as observables and compute the elementary effects of the added observables. For example, you can compute the effects for the maximum tumor weight by defining a custom expression as follows.

% Suppress an information warning that is issued. warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON'); % Add the observable expression. eeObs = addobservable(eeResults2,'Maximum tumor_weight','max(tumor_weight)','Units','gram');

Plot the computed simulation results showing the 90% quantile region.

h2 = plotData(eeObs,ShowMedian=true,ShowMean=false); h2.Position(:) = [100 100 1500 800];

You can also remove the observable by specifying its name.

`eeNoObs = removeobservable(eeObs,'Maximum tumor_weight');`

Restore the warning settings.

warning(warnSettings);

## Input Arguments

`eeObj`

— Results containing means and standard deviations of elementary effects

`SimBiology.gsa.ElementaryEffects`

object

Results containing the means and standard deviations of elementary effects, specified
as a `SimBiology.gsa.ElementaryEffects`

object.

### Name-Value Arguments

Specify optional pairs of arguments as
`Name1=Value1,...,NameN=ValueN`

, where `Name`

is
the argument name and `Value`

is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.

**Example: **`h = bar(results,Observables='tumor_weight')`

specifies to plot
the bar graph of the mean and standard deviation of elementary effects corresponding to the
tumor weight response.

`Parameters`

— Input parameters to plot

character vector | string | string vector | cell array of character vectors | vector of positive integers

Input parameters to plot, specified as a character vector, string, string vector, cell
array of character vectors, or vector of positive integers indexing into the columns of
the `resultsObject.ParameterSamples`

table. Use this name-value
argument to select parameters and plot their corresponding GSA results. By default, all
input parameters are included in the plot.

**Data Types: **`double`

| `char`

| `string`

| `cell`

`Observables`

— Model responses or observables to plot

character vector | string | string vector | cell array of character vectors | vector of positive integers

Model responses or observables to plot, specified as a character vector, string, string
vector, cell array of character vectors, or vector of positive integers indexing into
`resultsObject.Observables`

. By default, the function plots GSA
results for all model responses or observables.

**Data Types: **`double`

| `char`

| `string`

| `cell`

`ShowMean`

— Flag to plot means of elementary effects

`true`

(default) | `false`

Flag to plot the means of elementary effects, specified as `true`

or `false`

.

**Data Types: **`logical`

`ShowStandardDeviation`

— Flag to plot standard deviations of elementary effects

`true`

(default) | `false`

Flag to plot the standard deviations of elementary effects, specified as
`true`

or `false`

.

**Data Types: **`logical`

`MeanColor`

— Color of means of elementary effects

three-element row vector | hexadecimal color code | color name

Color of the means of elementary effects, specified as a three-element row vector,
hexadecimal color code, color name, or a short name. By default, the function uses
the first MATLAB^{®} default color. To view the default color order, enter
`get(groot,'defaultAxesColorOrder')`

or see the ColorOrder property.

For details on valid color names and corresponding RGB triplets and hexadecimal codes, see Specify Plot Colors.

**Data Types: **`double`

`StandardDeviationColor`

— Color of standard deviations of elementary effects

three-element row vector | hexadecimal color code | color name

Color of the standard deviations of elementary effects, specified as a
three-element row vector, hexadecimal color code, color name, or a short name. By
default, the function uses the second MATLAB default color. To view the default color order, enter
`get(groot,'defaultAxesColorOrder')`

or see the ColorOrder property.

For details on valid color names and corresponding RGB triplets and hexadecimal codes, see Specify Plot Colors.

**Data Types: **`double`

## Output Arguments

`h`

— Handle

figure handle

Handle to the figure, specified as a figure handle.

## Version History

**Introduced in R2021b**

## Open Example

You have a modified version of this example. Do you want to open this example with your edits?

## MATLAB Command

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

# Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)