# scatter3

3-D scatter plot

## Description

### Vector and Matrix Data

example

scatter3(X,Y,Z) displays circles at the locations specified by X, Y, and Z.

• To plot one set of coordinates, specify X, Y, and Z as vectors of equal length.

• To plot multiple sets of coordinates on the same set of axes, specify at least one of X, Y, or Z as a matrix. (Since R2022a)

example

scatter3(X,Y,Z,S) specifies the circle sizes.

• To vary the circle sizes, specify S as a vector.

• To specify different sizes across multiple sets of coordinates, specify a matrix. (Since R2022a)

example

scatter3(X,Y,Z,S,C) specifies the circle colors. You can specify one color for all the circles, or you can vary the color. For example, you can plot all red circles by specifying C as "red".

example

scatter3(___,'filled') fills in the circles, using any of the input argument combinations in the previous syntaxes.

example

scatter3(___,markertype) specifies the marker type.

### Table Data

example

scatter3(tbl,xvar,yvar,zvar) plots the variables xvar, yvar, and zvar from the table tbl. To plot one data set, specify one variable each for xvar, yvar, and zvar. To plot multiple data sets, specify multiple variables for at least one of those arguments. The arguments that specify multiple variables must specify the same number of variables. (Since R2021b)

example

scatter3(tbl,xvar,yvar,zvar,'filled') plots the specified variables from the table with filled circles. (Since R2021b)

example

scatter3(ax,___) plots into the axes specified by ax instead of into the current axes (gca). The ax option can precede any of the input argument combinations in the previous syntaxes.

example

scatter3(___,Name,Value) modifies the scatter plot using one or more name-value arguments to set properties. For example:

• scatter3(x,y,z,'LineWidth',2) creates a scatter plot with 2-point marker outlines.

• scatter3(tbl,'MyX','MyY','MyZ','ColorVariable','MyColors') creates a scatter plot from data in a table, and customizes the marker colors using data from the table.

For a full list of properties, see Scatter Properties.

example

h = scatter3(___) returns the Scatter object. Use h to modify properties of the scatter chart after it is created.

## Examples

collapse all

Create a 3-D scatter plot. Use sphere to define vectors x, y, and z.

figure
[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];
scatter3(x,y,z)

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vector s to specify the marker sizes.

S = repmat([100,50,5],numel(X),1);
s = S(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s)
view(40,35)

Corresponding entries in x, y, z, and s determine the location and size of each marker.

Use sphere to define vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Define vectors s and c to specify the size and color of each marker.

S = repmat([50,25,10],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,s,c)
view(40,35)

Corresponding entries in x, y, z, and c determine the location and color of each marker.

Create vectors x and y as cosine and sine values with random noise.

z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and fill in the markers. Use view to change the angle of the axes in the figure.

scatter3(x,y,z,'filled')
view(-30,10)

Initialize the random-number generator to make the output of rand repeatable. Define vectors x and y as cosine and sine values with random noise.

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker type. Use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,'*')
view(-30,10)

Initialize the random-number generator to make the output of rand repeatable. Define vectors x and y as cosine and sine values with random noise.

rng default
z = linspace(0,4*pi,250);
x = 2*cos(z) + rand(1,250);
y = 2*sin(z) + rand(1,250);

Create a 3-D scatter plot and set the marker edge color and the marker face color. Use view to change the angle of the axes in the figure.

figure
scatter3(x,y,z,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0 .75 .75])
view(-30,10)

Since R2021b

A convenient way to plot data from a table is to pass the table to the scatter3 function and specify the variables you want to plot. For example, read patients.xls as a table tbl. Plot the relationship between the Systolic, Diastolic, and Weight variables by passing tbl as the first argument to the scatter3 function followed by the variable names. By default, the axis labels match the variable names.

scatter3(tbl,'Systolic','Diastolic','Weight');

You can also plot multiple variables at the same time. For example, plot both blood pressure variables on the x-axis by specifying the xvar argument as the cell array {'Systolic','Diastolic'}. Then add a legend. The legend labels match the variable names.

scatter3(tbl,{'Systolic','Diastolic'},'Age','Weight');
legend

Since R2021b

One way to plot data from a table and customize the colors and marker sizes is to set the ColorVariable and SizeData properties. You can set these properties as name-value arguments when you call the scatter3 function, or you can set them on the Scatter object later.

For example, read patients.xls as a table tbl. Plot the relationship between the Systolic, Diastolic, and Weight variables with filled markers. Vary the marker colors by specifying the ColorVariable name-value argument. Return the Scatter object as s, so you can set other properties later.

s = scatter3(tbl,'Systolic','Diastolic','Weight','filled', ...
'ColorVariable','Diastolic');

Change the marker sizes to 100 points by setting the SizeData property. Then add a colorbar.

s.SizeData = 100;
colorbar

Since R2019b

You can display a tiling of plots using the tiledlayout and nexttile functions.

Load the seamount data set to get vectors x, y, and z. Call the tiledlayout function to create a 2-by-1 tiled chart layout. Call the nexttile function to create the axes objects ax1 and ax2. Then create separate scatter plots in the axes by specifying the axes object as the first argument to scatter3.

tiledlayout(2,1)
ax1 = nexttile;
ax2 = nexttile;
scatter3(ax1,x,y,z,'MarkerFaceColor',[0 .75 .75])
scatter3(ax2,x,y,z,'*')

Use the sphere function to create vectors x, y, and z.

[X,Y,Z] = sphere(16);
x = [0.5*X(:); 0.75*X(:); X(:)];
y = [0.5*Y(:); 0.75*Y(:); Y(:)];
z = [0.5*Z(:); 0.75*Z(:); Z(:)];

Create vectors s and c to specify the size and color for each marker.

S = repmat([70,50,20],numel(X),1);
C = repmat([1,2,3],numel(X),1);
s = S(:);
c = C(:);

Create a 3-D scatter plot and return the scatter series object.

h = scatter3(x,y,z,s,c);

Use an RGB triplet color value to set the marker face color. Use dot notation to set properties.

h.MarkerFaceColor = [0 0.5 0.5];

## Input Arguments

collapse all

x-coordinates, specified as a scalar, vector, or matrix. The size and shape of X depends on the shape of your data. This table describes the most common situations.

Type of PlotHow to Specify Coordinates
Single point

Specify X, Y, and Z as scalars. For example:

scatter3(1,2,3)

One set of points

Specify X, Y, and Z as any combination of row or column vectors of the same length. For example:

X = [1 2 3 4];
Y = [5; 6; 7; 8];
Z = [9 10 11 12];
scatter3(X,Y,Z)

Multiple sets of points that are different colors

If all the data sets share coordinates in one or more dimensions, specify the shared coordinates as a vector and the other coordinates as matrices. The length of the vector must match one of the dimensions of the matrices. For example, plot two data sets that share the same x-coordinates.

X = [1 2 3 4];
Y = [4 5 6 7; 8 9 10 11];
Z = [10 11 12 13; 14 15 16 17];
scatter3(X,Y,Z)
If the matrices are square, scatter3 plots a separate set of points for each column in the matrices.

Alternatively, specify X, Y, and Z as matrices of equal size. In this case, scatter3 plots the columns of the matrices. For example, plot four data sets.

X = [1 3 5 6; 2 4 6 8];
Y = [10 25 45 61; 20 40 60 70];
Z = [12 5 6 8; 9 13 2 7];
scatter3(X,Y,Z)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

y-coordinates, specified as a scalar, vector, or matrix. The size and shape of y depends on the shape of your data. This table describes the most common situations.

Type of PlotHow to Specify Coordinates
Single point

Specify X, Y, and Z as scalars. For example:

scatter3(1,2,3)

One set of points

Specify X, Y, and Z as any combination of row or column vectors of the same length. For example:

X = [1 2 3 4];
Y = [5; 6; 7; 8];
Z = [9 10 11 12];
scatter3(X,Y,Z)

Multiple sets of points that are different colors

If all the data sets share coordinates in one or more dimensions, specify the shared coordinates as a vector and the other coordinates as matrices. The length of the vector must match one of the dimensions of the matrices. For example, plot two data sets that share the same x-coordinates.

X = [1 2 3 4];
Y = [4 5 6 7; 8 9 10 11];
Z = [10 11 12 13; 14 15 16 17];
scatter3(X,Y,Z)
If the matrices are square, scatter3 plots a separate set of points for each column in the matrices.

Alternatively, specify X, Y, and Z as matrices of equal size. In this case, scatter3 plots the columns of the matrices. For example, plot four data sets.

X = [1 3 5 6; 2 4 6 8];
Y = [10 25 45 61; 20 40 60 70];
Z = [12 5 6 8; 9 13 2 7];
scatter3(X,Y,Z)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

z-coordinates, specified as a scalar, vector, or matrix. The size and shape of Z depends on the shape of your data. This table describes the most common situations.

Type of PlotHow to Specify Coordinates
Single point

Specify X, Y, and Z as scalars. For example:

scatter3(1,2,3)

One set of points

Specify X, Y, and Z as any combination of row or column vectors of the same length. For example:

X = [1 2 3 4];
Y = [5; 6; 7; 8];
Z = [9 10 11 12];
scatter3(X,Y,Z)

Multiple sets of points that are different colors

If all the data sets share coordinates in one or more dimensions, specify the shared coordinates as a vector and the other coordinates as matrices. The length of the vector must match one of the dimensions of the matrices. For example, plot two data sets that share the same x-coordinates.

X = [1 2 3 4];
Y = [4 5 6 7; 8 9 10 11];
Z = [10 11 12 13; 14 15 16 17];
scatter3(X,Y,Z)
If the matrices are square, scatter3 plots a separate set of points for each column in the matrices.

Alternatively, specify X, Y, and Z as matrices of equal size. In this case, scatter3 plots the columns of the matrices. For example, plot four data sets.

X = [1 3 5 6; 2 4 6 8];
Y = [10 25 45 61; 20 40 60 70];
Z = [12 5 6 8; 9 13 2 7];
scatter3(X,Y,Z)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

Marker size, specified as a numeric scalar, vector, matrix, or empty array ([]). The size controls the area of each marker in points squared. An empty array specifies the default size of 36 points. The way you specify the size depends on how you specify X, Y, and Z and how you want the plot to look. This table describes the most common situations.

Marker SizeX, Y, and Z SExample

Same size for all points

Any valid combination of vectors or matrices described for X, Y, and Z

Scalar

Specify X as a vector, Y and Z as matrices, and S as a scalar.

X = [1 2 3 4];
Y = [5 6 7 8; 9 10 11 12];
Z = [13 14 15 16; 17 18 19 20];
scatter3(X,Y,Z,100)

Different size for each point

Vectors of the same length

• A vector with the same length as X, Y, and Z.

• A matrix with at least one dimension that matches the lengths of X, Y, and Z. Specifying a matrix is useful for displaying multiple markers with different sizes at each (x,y,z) location.

Specify X, Y, Z, and S as vectors.

X = [1 2 3 4];
Y = [4 5 6 7];
Z = [8 9 10 11];
S = [80 150 700 50];
scatter3(X,Y,Z,S)

Specify X, Y, and Z as vectors and S as a matrix.

X = [1 2 3 4];
Y = [5 6 7 8];
Z = [9 10 11 12];
S = [80 30; 150 900; 50 500; 200 350];
scatter3(X,Y,Z,S)

Different size for each point

At least one of X, Y, or Z is a matrix for plotting multiple data sets

• A vector with the same number of elements as there are points in each data set.

• A matrix that has the same size as the X, Y, or Z matrix.

Specify X as a vector, Y and Z as matrices, and S as a vector.

X = [1 2 3 4];
Y = [1 6; 3 8; 2 7; 4 9];
Z = [2 8; 3 10; 4 7; 4 12];
S = [80 150 200 350];
scatter3(X,Y,Z,S)

Specify X as a vector and Y, Z, and S as matrices.

X = [1 2 3 4];
Y = [1 6; 3 8; 2 7; 4 9];
Z = [10 11; 12 13; 14 15; 16 17];
S = [80 30; 150 900; 50 2000; 200 350];
scatter3(X,Y,Z,S)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Marker color, specified as a color name, RGB triplet, matrix of RGB triplets, or a vector of colormap indices.

• Color name — A color name such as "red", or a short name such as "r".

• RGB triplet — A three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. RGB triplets are useful for creating custom colors.

• Matrix of RGB triplets — A three-column matrix in which each row is an RGB triplet.

• Vector of colormap indices — A vector of numeric values that is the same length as the X, Y, and Z vectors.

The way you specify the color depends on your preferred color scheme and whether you are plotting one set of coordinates or multiple sets of coordinates. This table describes the most common situations.

Color SchemeHow to Specify the ColorExample

Use one color for all the points.

Specify a color name or a short name from the table below, or specify one RGB triplet.

Plot one set of points, and specify the color as "red".

X = [1 2 3 4];
Y = [2 5 3 6];
Z = [10 6 4 7];
S = 50;
scatter3(X,Y,Z,S,"red")

Plot two sets of points, and specify the color as red using the RGB triplet [1 0 0].

X = [1 2 3 4];
Y = [2 5 3 6];
Z = [2 5; 1 2; 8 4; 7 9];
S = 50;
scatter3(X,Y,Z,S,[1 0 0])

Assign different colors to each point using a colormap.

Specify a row or column vector of numbers. The numbers map into the current colormap array. The smallest value maps to the first row in the colormap, and the largest value maps to the last row. The intermediate values map linearly to the intermediate rows.

If your plot has three points, specify a column vector to ensure the values are interpreted as colormap indices.

You can use this method only when X, Y, and Z are vectors, and S is either a vector or a scalar.

Create a vector C that specifies four colormap indices. Plot four points using the colors from the current colormap. Then, change the colormap to winter.

C = [1 2 3 4];
X = [1 2 3 4];
Y = [1 0 6 2];
Z = [2 5 3 7];
S = 50;
scatter3(X,Y,Z,S,C)
colormap(gca,"winter")

Create a custom color for each point.

Specify an m-by-3 matrix of RGB triplets, where m is the number of points in the plot.

You can use this method only when X, Y, and Z are vectors, and S is either a vector or a scalar.

Create a matrix C that specifies RGB triplets for green, red, gray, and purple. Then create a scatter plot of four points using those colors.

C = [0 1 0; 1 0 0; 0.5 0.5 0.5; 0.6 0 1];
X = [1 2 3 4];
Y = [2 5 3 6];
Z = [10 6 4 7];
S = 50;
scatter3(X,Y,Z,S,C)

Create a different color for each data set.

Specify an n-by-3 matrix of RGB triplets, where n is the number of data sets.

You can use this method only when at least one of X, Y, Z, or S is a matrix.

Create a matrix C that contains two RGB triplets. Then plot two data sets using those colors.

C = [1 0 0; 0.6 0 1];
X = [1 2 3 4];
Y = [5 6 7 8];
Z = [2 5; 1 2; 8 4; 11 9];
S = 50;
scatter3(X,Y,Z,S,C)

#### Color Names and RGB Triplets for Common Colors

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

"green""g"[0 1 0]"#00FF00"

"blue""b"[0 0 1]"#0000FF"

"cyan" "c"[0 1 1]"#00FFFF"

"magenta""m"[1 0 1]"#FF00FF"

"yellow""y"[1 1 0]"#FFFF00"

"black""k"[0 0 0]"#000000"

"white""w"[1 1 1]"#FFFFFF"

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.

[0 0.4470 0.7410]"#0072BD"

[0.8500 0.3250 0.0980]"#D95319"

[0.9290 0.6940 0.1250]"#EDB120"

[0.4940 0.1840 0.5560]"#7E2F8E"

[0.4660 0.6740 0.1880]"#77AC30"

[0.3010 0.7450 0.9330]"#4DBEEE"

[0.6350 0.0780 0.1840]"#A2142F"

Marker, specified as one of the markers in this table.

MarkerDescriptionResulting Marker
"o"Circle

"+"Plus sign

"*"Asterisk

"."Point

"x"Cross

"_"Horizontal line

"|"Vertical line

"square"Square

"diamond"Diamond

"^"Upward-pointing triangle

"v"Downward-pointing triangle

">"Right-pointing triangle

"<"Left-pointing triangle

"pentagram"Pentagram

"hexagram"Hexagram

"none"No markersNot applicable

Option to fill the interior of the markers, specified as 'filled'. Use this option with markers that have a face, for example, 'o' or 'square'. Markers that do not have a face and contain only edges do not draw ('+', '*', '.', and 'x').

The 'filled' option sets the MarkerFaceColor property of the Scatter object to 'flat' and the MarkerEdgeColor property to 'none', so the marker faces draw, but the edges do not.

Source table containing the data to plot, specified as a table or a timetable.

Table variables containing the x-coordinates, specified as one or more table variable indices.

#### Specifying Table Indices

Use any of the following indexing schemes to specify the desired variable or variables.

Indexing SchemeExamples

Variable names:

• A string, character vector, or cell array.

• A pattern object.

• "A" or 'A' — A variable named A

• ["A","B"] or {'A','B'} — Two variables named A and B

• "Var"+digitsPattern(1) — Variables named "Var" followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.

• 3 — The third variable from the table

• [2 3] — The second and third variables from the table

• [false false true] — The third variable

Variable type:

• A vartype subscript that selects variables of a specified type.

• vartype("categorical") — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values.

To plot one data set, specify one variable for xvar, one variable for yvar, and one variable for zvar. For example, read Patients.xls into the table tbl. Plot the Height, Weight, and Diastolic variables.

scatter3(tbl,"Height","Weight","Diastolic")

To plot multiple data sets together, specify multiple variables for at least one of xvar, yvar, or zvar. If you specify multiple variables for more than one argument, the number of variables must be the same for each of those arguments.

For example, plot the Weight variable on the x-axis, the Systolic and Diastolic variables on the y-axis, and the Age variable on the z-axis.

scatter3(tbl,"Weight",["Systolic","Diastolic"],"Age")

You can also use different indexing schemes for xvar, yvar, and zvar. For example, specify xvar as a variable name, yvar as an index number, and zvar as a logical vector.

scatter3(tbl,"Height",6,[false false true])

Table variables containing the y-coordinates, specified as one or more table variable indices.

#### Specifying Table Indices

Use any of the following indexing schemes to specify the desired variable or variables.

Indexing SchemeExamples

Variable names:

• A string, character vector, or cell array.

• A pattern object.

• "A" or 'A' — A variable named A

• ["A","B"] or {'A','B'} — Two variables named A and B

• "Var"+digitsPattern(1) — Variables named "Var" followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.

• 3 — The third variable from the table

• [2 3] — The second and third variables from the table

• [false false true] — The third variable

Variable type:

• A vartype subscript that selects variables of a specified type.

• vartype("categorical") — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values.

To plot one data set, specify one variable for xvar, one variable for yvar, and one variable for zvar. For example, read Patients.xls into the table tbl. Plot the Height, Weight, and Diastolic variables.

scatter3(tbl,"Height","Weight","Diastolic")

To plot multiple data sets together, specify multiple variables for at least one of xvar, yvar, or zvar. If you specify multiple variables for more than one argument, the number of variables must be the same for each of those arguments.

For example, plot the Weight variable on the x-axis, the Systolic and Diastolic variables on the y-axis, and the Age variable on the z-axis.

scatter3(tbl,"Weight",["Systolic","Diastolic"],"Age")

You can also use different indexing schemes for xvar, yvar, and zvar. For example, specify xvar as a variable name, yvar as an index number, and zvar as a logical vector.

scatter3(tbl,"Height",6,[false false true])

Table variables containing the z-coordinates, specified as one or more table variable indices.

#### Specifying Table Indices

Use any of the following indexing schemes to specify the desired variable or variables.

Indexing SchemeExamples

Variable names:

• A string, character vector, or cell array.

• A pattern object.

• "A" or 'A' — A variable named A

• ["A","B"] or {'A','B'} — Two variables named A and B

• "Var"+digitsPattern(1) — Variables named "Var" followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A vector of numbers.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.

• 3 — The third variable from the table

• [2 3] — The second and third variables from the table

• [false false true] — The third variable

Variable type:

• A vartype subscript that selects variables of a specified type.

• vartype("categorical") — All the variables containing categorical values

The table variables you specify can contain numeric, categorical, datetime, or duration values.

To plot one data set, specify one variable for xvar, one variable for yvar, and one variable for zvar. For example, read Patients.xls into the table tbl. Plot the Height, Weight, and Diastolic variables.

scatter3(tbl,"Height","Weight","Diastolic")

To plot multiple data sets together, specify multiple variables for at least one of xvar, yvar, or zvar. If you specify multiple variables for more than one argument, the number of variables must be the same for each of those arguments.

For example, plot the Weight variable on the x-axis, the Systolic and Diastolic variables on the y-axis, and the Age variable on the z-axis.

scatter3(tbl,"Weight",["Systolic","Diastolic"],"Age")

You can also use different indexing schemes for xvar, yvar, and zvar. For example, specify xvar as a variable name, yvar as an index number, and zvar as a logical vector.

scatter3(tbl,"Height",6,[false false true])

Axes object. If you do not specify an axes, then scatter3 plots into the current axes.

### Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'MarkerFaceColor','red' sets the marker face color to red.

The properties listed here are only a subset. For a complete list, see Scatter Properties.

Width of marker edge, specified as a positive value in point units.

Example: 0.75

Marker outline color, specified "flat", an RGB triplet, a hexadecimal color code, a color name, or a short name. The default value of "flat" uses colors from the CData property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1], for example, [0.4 0.6 0.7].

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

"green""g"[0 1 0]"#00FF00"

"blue""b"[0 0 1]"#0000FF"

"cyan" "c"[0 1 1]"#00FFFF"

"magenta""m"[1 0 1]"#FF00FF"

"yellow""y"[1 1 0]"#FFFF00"

"black""k"[0 0 0]"#000000"

"white""w"[1 1 1]"#FFFFFF"

"none"Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

[0 0.4470 0.7410]"#0072BD"

[0.8500 0.3250 0.0980]"#D95319"

[0.9290 0.6940 0.1250]"#EDB120"

[0.4940 0.1840 0.5560]"#7E2F8E"

[0.4660 0.6740 0.1880]"#77AC30"

[0.3010 0.7450 0.9330]"#4DBEEE"

[0.6350 0.0780 0.1840]"#A2142F"

Example: [0.5 0.5 0.5]

Example: "blue"

Example: "#D2F9A7"

Marker fill color, specified as "flat", "auto", an RGB triplet, a hexadecimal color code, a color name, or a short name. The "flat" option uses the CData values. The "auto" option uses the same color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1], for example, [0.4 0.6 0.7].

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Therefore, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

"green""g"[0 1 0]"#00FF00"

"blue""b"[0 0 1]"#0000FF"

"cyan" "c"[0 1 1]"#00FFFF"

"magenta""m"[1 0 1]"#FF00FF"

"yellow""y"[1 1 0]"#FFFF00"

"black""k"[0 0 0]"#000000"

"white""w"[1 1 1]"#FFFFFF"

"none"Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

[0 0.4470 0.7410]"#0072BD"

[0.8500 0.3250 0.0980]"#D95319"

[0.9290 0.6940 0.1250]"#EDB120"

[0.4940 0.1840 0.5560]"#7E2F8E"

[0.4660 0.6740 0.1880]"#77AC30"

[0.3010 0.7450 0.9330]"#4DBEEE"

[0.6350 0.0780 0.1840]"#A2142F"

Example: [0.3 0.2 0.1]

Example: "green"

Example: "#D2F9A7"

Table variable containing the color data, specified as a variable index into the source table.

#### Specifying the Table Index

Use any of the following indexing schemes to specify the desired variable.

Indexing SchemeExamples

Variable name:

• A string scalar or character vector.

• A pattern object. The pattern object must refer to only one variable.

• "A" or 'A' — A variable named A

• "Var"+digitsPattern(1) — The variable with the name "Var" followed by a single digit

Variable index:

• An index number that refers to the location of a variable in the table.

• A logical vector. Typically, this vector is the same length as the number of variables, but you can omit trailing 0 or false values.

• 3 — The third variable from the table

• [false false true] — The third variable

Variable type:

• A vartype subscript that selects a table variable of a specified type. The subscript must refer to only one variable.

• vartype("double") — The variable containing double values

#### Specifying Color Data

Specifying the ColorVariable property controls the colors of the markers. The data in the variable controls the marker fill color when the MarkerFaceColor property is set to "flat". The data can also control the marker outline color, when the MarkerEdgeColor is set to "flat".

The table variable you specify can contain values of any numeric type. The values can be in either of the following forms:

• A column of numbers that linearly map into the current colormap.

• A three-column array of RGB triplets. RGB triplets are three-element vectors whose values specify the intensities of the red, green, and blue components of specific colors. The intensities must be in the range [0,1]. For example, [0.5 0.7 1] specifies a shade of light blue.

When you set the ColorVariable property, MATLAB updates the CData property.

## Output Arguments

collapse all

Scatter object. This is a unique identifier, which you can use to query and modify the properties of the Scatter object after it is created.

## Version History

Introduced before R2006a

expand all