minus, -
Subtraction
Syntax
Description
C =
subtracts array A
- B
B
from array A
by
subtracting corresponding elements. The sizes of A
and
B
must be the same or be compatible.
If the sizes of A
and B
are compatible,
then the two arrays implicitly expand to match each other. For example, if
A
or B
is a scalar, then the scalar is
combined with each element of the other array. Also, vectors with different
orientations (one row vector and one column vector) implicitly expand to form a
matrix.
Examples
Subtract Scalar from Array
Create an array, A
, and subtract a scalar value from it.
A = [2 1; 3 5]; C = A - 2
C = 2×2
0 -1
1 3
The scalar is subtracted from each entry of A
.
Subtract Two Arrays
Create two arrays, A
and B
, and subtract the second, B
, from the first, A
.
A = [1 0; 2 4]; B = [5 9; 2 1]; C = A - B
C = 2×2
-4 -9
0 3
The elements of B
are subtracted from the corresponding elements of A
.
Use the syntax -C
to negate the elements of C
.
-C
ans = 2×2
4 9
0 -3
Subtract Row and Column Vectors
Create a 1-by-2 row vector and 3-by-1 column vector and subtract them.
a = 1:2; b = (1:3)'; a - b
ans = 3×2
0 1
-1 0
-2 -1
The result is a 3-by-2 matrix, where each (i,j) element in the matrix is equal to a(j) - b(i)
:
Subtract Mean from Matrix
Create a matrix, A
. Scale the elements in each column by subtracting the mean.
A = [1 9 3; 2 7 8]
A = 2×3
1 9 3
2 7 8
A - mean(A)
ans = 2×3
-0.5000 1.0000 -2.5000
0.5000 -1.0000 2.5000
Input Arguments
A
, B
— Operands
scalars | vectors | matrices | multidimensional arrays
Operands, specified as scalars, vectors, matrices, or multidimensional
arrays. Inputs A
and B
must either be
the same size or have sizes that are compatible (for example,
A
is an M
-by-N
matrix and B
is a scalar or
1
-by-N
row vector). For more
information, see Compatible Array Sizes for Basic Operations.
Operands with an integer data type cannot be complex.
If one input is a
datetime
array,duration
array, orcalendarDuration
array, then numeric values in the other input are treated as a number of 24-hour days.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
| char
| datetime
| duration
| calendarDuration
Complex Number Support: Yes
Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
This function fully supports tall arrays. For more information, see Tall Arrays.
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
If you use
minus
with single type and double type operands, the generated code might not produce the same result as MATLAB®. See Binary Element-Wise Operations with Single and Double Operands (MATLAB Coder).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
Usage notes and limitations:
If you use
minus
with single type and double type operands, the generated code might not produce the same result as MATLAB. See Binary Element-Wise Operations with Single and Double Operands (MATLAB Coder).
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
This function fully supports thread-based environments. For more information, see Run MATLAB Functions in Thread-Based Environment.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
Usage notes and limitations:
64-bit integers are not supported.
For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing Toolbox™.
This function fully supports distributed arrays. For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox).
Version History
Introduced before R2006aR2020b: Implicit expansion change affects calendarDuration
, datetime
, and duration
arrays
Starting in R2020b, minus
supports implicit expansion when the
arguments are calendarDuration
, datetime
, or
duration
arrays. Between R2020a and R2016b, implicit
expansion was supported only for numeric data types.
R2016b: Implicit expansion change affects arguments for operators
Starting in R2016b with the addition of implicit expansion, some combinations of arguments for basic operations that previously returned errors now produce results. For example, you previously could not add a row and a column vector, but those operands are now valid for addition. In other words, an expression like [1 2] + [1; 2]
previously returned a size mismatch error, but now it executes.
If your code uses element-wise operators and relies on the errors that MATLAB previously returned for mismatched sizes, particularly within a try
/catch
block, then your code might no longer catch those errors.
For more information on the required input sizes for basic array operations, see Compatible Array Sizes for Basic Operations.
Open Example
You have a modified version of this example. Do you want to open this example with your edits?
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)