This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

rdivide, ./

Element-wise quaternion right division

Syntax

C = A./B

Description

example

C = A./B performs quaternion element-wise division by dividing each element of quaternion A by the corresponding element of quaternion B.

Examples

collapse all

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])
A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B
C = 2x1 quaternion array
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)
A = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)
B = 2x2 quaternion array
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B
C = 2x2 quaternion array
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments

collapse all

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are the same or one of the dimensions is 1.

Data Types: quaternion | single | double

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are the same or one of the dimensions is 1.

Data Types: quaternion | single | double

Output Arguments

collapse all

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.

Data Types: quaternion

Algorithms

collapse all

Quaternion Division

Given a quaternion A=a1+a2i+a3j+a4k and a real scalar p,

C=A./p=a1p+a2pi+a3pj+a4pk

Note

For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C=A./B=A.*B1=A.*(conj(B)norm(B)2)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2018b