accelparams
Accelerometer sensor parameters
Description
The accelparams
class creates an accelerometer sensor
parameters object. You can use this object to model an accelerometer when simulating an
IMU with imuSensor
. See the
Algorithms section of imuSensor
for details
of accelparams
modeling.
Creation
Description
returns an ideal
accelerometer sensor parameters object with default values.params
= accelparams
configures an accelerometer sensor parameters object properties using one or
more params
= accelparams(Name,Value
)Name-Value
pair arguments. Name
is
a property name and Value
is the corresponding value.
Name
must appear inside single quotes
(''
). You can specify several name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN
). Any
unspecified properties take default values.
Properties
MeasurementRange
— Maximum sensor reading (m/s2)
inf
(default) | real positive scalar
Maximum sensor reading in m/s2, specified as a real positive scalar.
Data Types: single
| double
Resolution
— Resolution of sensor measurements ((m/s2)/LSB)
0
(default) | real nonnegative scalar
Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar. Here, LSB is the acronym for least significant bit. Resolution is often referred to as Scale Factor for accelerometer.
Data Types: single
| double
ConstantBias
— Constant sensor offset bias (m/s2)
[0 0 0]
(default) | real scalar | real 3-element row vector
Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
AxesMisalignment
— Sensor axes skew (%)
diag([100 100 100])
(default) | scalar | 3-element row vector | 3-by-3 matrix
Sensor axes skew in percentage, specified as a scalar, a 3-element row vector, or a 3-by-3 matrix. The diagonal elements of the matrix account for the misalignment effects for each axes. The off-diagonal elements account for the cross-axes misalignment effects. The measured state vmeasure is obtained from the true state vtrue via the misalignment matrix as:
If you specify the property as a scalar, then all the off-diagonal elements of the matrix take the value of the specified scalar and all the diagonal elements are 100.
If you specify the property as a vector [a b c], then m21 = m31 = a, m12 = m32 = b, and m13 = m23 = c. All the diagonal elements are 100.
Data Types: single
| double
NoiseDensity
— Power spectral density of sensor noise (m/s2/√Hz)
[0 0 0]
(default) | real scalar | real 3-element row vector
Power spectral density of sensor noise in (m/s2/√Hz), specified as a real scalar or 3-element row vector. This property corresponds to the velocity random walk (VRW). Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
BiasInstabilityCoefficients
— Filter coefficients for bias instability noise generation
fractalcoef
(default) | structure
Filter coefficients for bias instability noise generation, specified as a structure. The structure has these fields:
Numerator
— Numerator coefficients, specified as a real-valued vector.Denominator
— Denominator coefficients, specified as a real-valued vector.
To specify coefficients for fractal noise, use the fractalcoef
function.
Example: struct(Numerator=1,Denominator=[1 -0.5])
Data Types: struct
BiasInstability
— Instability of the bias offset (m/s2)
[0 0 0]
(default) | real scalar | real 3-element row vector
Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
RandomWalk
— Integrated white noise of sensor ((m/s2)*(√Hz))
[0 0 0]
(default) | real scalar | real 3-element row vector
Integrated white noise of sensor in (m/s2)*(√Hz), specified as a real scalar or 3-element row vector. Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
NoiseType
— Type of random noise
"double-sided"
(default) | "single-sided"
Type of random noise, specified as:
"double-sided"
— Random noise coefficients have a scale factor of 2."single-sided"
— Random noise coefficients have a scale factor of 1.
Data Types: char
| string
TemperatureBias
— Sensor bias from temperature ((m/s2)/℃)
[0 0 0]
(default) | real scalar | real 3-element row vector
Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row vector. Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
TemperatureScaleFactor
— Scale factor error from temperature (%/℃)
[0 0 0]
(default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]
Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single
| double
Examples
Generate Accelerometer Data from Stationary Inputs
Generate accelerometer data for an imuSensor object from stationary inputs.
Generate an accelerometer parameter object with a maximum sensor reading of 19.6 and a resolution of 0.598 . The constant offset bias is 0.49 . The sensor has a power spectral density of 3920 . The bias from temperature is 0.294 . The scale factor error from temperature is 0.02%. The sensor axes are skewed by 2%.
params = accelparams('MeasurementRange',19.6,'Resolution',0.598e-3,'ConstantBias',0.49,'NoiseDensity',3920e-6,'TemperatureBias',0.294,'TemperatureScaleFactor',0.02,'AxesMisalignment',2);
Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the accelerometer parameter object.
Fs = 100; numSamples = 1000; t = 0:1/Fs:(numSamples-1)/Fs; imu = imuSensor('SampleRate', Fs, 'Accelerometer', params);
Generate accelerometer data from the imuSensor object.
orient = quaternion.ones(numSamples, 1); acc = zeros(numSamples, 3); angvel = zeros(numSamples, 3); accelData = imu(acc, angvel, orient);
Plot the resultant accelerometer data.
plot(t, accelData) title('Accelerometer') xlabel('s') ylabel('m/s^2')
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2018bR2023b: Specify bias instability noise coefficients and noise type
You can use the new BiasInstabilityCoefficients
property of the accelparams
object to specify the coefficients of the transfer function used to generate the bias instability noise. Additionally, you can use the new NoiseType
property of this object to set the scale factor of the noise coefficients as 1
or 2
.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)