fixed.realConditionNumberUpperBound
Estimate of upper bound for 2-norm condition number of real-valued matrix
Since R2022b
Syntax
Description
returns an estimate of an upper bound for the 2-norm condition number of a real-valued
C
= fixed.realConditionNumberUpperBound(m
,n
,max_abs_A
,noiseStandardDeviation
)m
-by-n
matrix A
, where
max_abs_A >= max(abs(A(:)))
and
noiseStandardDeviation
is the standard deviation of the additive
random noise in A
.
uses the probability C
= fixed.realConditionNumberUpperBound(___,p_s
)p_s
that the estimate of the lower bound of the
smallest singular value is larger than the actual smallest singular value.
p_s
is an optional parameter. If not supplied or empty, then the
default value is used.
returns an estimate of an upper bound for the 2-norm condition number of a real-valued
matrix , where λ is the
C
= fixed.realConditionNumberUpperBound(___,regularizationParameter
)regularizationParameter
, A is an
m-by-n matrix with m >=
n, and In =
eye(n)
.
regularizationParameter
is an optional parameter. If not supplied or
empty, then the default value is used.
Examples
Input Arguments
More About
Algorithms
The condition number with respect to the inversion of matrix A
is the
ratio of the largest singular value of A
to the smallest singular value of
A
. The fixed.realSingularValueLowerBound
function estimates the lower bound of the
smallest singular value, s_n
, of A
. The fixed.singularValueUpperBound
function determines an upper bound for the largest
singular value, svdUpperBound
, of A
. A bound on the
condition number of A
is then cond(A) = max(svd(A))/min(svd(A))
<= svdUpperBound/s_n
[1][2][3].
References
[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2022.
[2] Bryan, Thomas A. and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/10.1137/040616413.
Extended Capabilities
Version History
Introduced in R2022b