fixed.singularValueUpperBound
Syntax
Description
returns an upper bound of the largest singular value of the matrix
svdUpperBound
= fixed.singularValueUpperBound(m
,n
,max_abs_A
,regularizationParameter
)[regularizationParameter*eye(n); A]
, where A
is an
m
-by-n
matrix with
.m
>= n
Examples
Input Arguments
Algorithms
The upper bound for the largest singular value of matrix A
is
svdUpperBound = sqrt(m*n)*max(abs(A(:)))
. If there is a regularization
parameter, then the upper bound is svdUpperBound = sqrt(m*n)*max(abs(A(:))) +
abs(regularizationParameter)
[1] [2] [3].
References
[1] Bryan, Thomas A., Jenna L. Warren, Shixin Zhuang, and Jessica Clayton. “Systems and Methods for Design Parameter Selection.” The MathWorks. US Patent 12,008,344 B2, issued June 11, 2024. https://patents.google.com/patent/US12008344B2/en?oq=US+12%2c008%2c344+B2
[2] Bryan, Thomas A., and Jenna L. Warren. “Systems and Methods for Design Parameter Selection.” The MathWorks. US Patent 12,045,737 B2, issued July 23, 2024. European EP 3,944,105 A1. https://patents.google.com/patent/US12045737B2/en?oq=US+12%2c045%2c737+B2.
[3] Chen, Zizhong and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603-620. https://doi.org/10.1137/040616413.
Extended Capabilities
Version History
Introduced in R2022b