# Optimal production planning with single-level (square distance penalty approach)

Version 1.0.0.0 (11.7 KB) by
An optimization test suite involving 54 continuous variables
Updated 20 Jun 2018

This submission can be used to evaluate the performance of optimization techniques on problems with continuous variables. This optimization problem arises for maximization of profit in production planning. However these files can be used as black-box optimization problems.

There are eight minimization optimization problems in this suite (case1.p, case2.p, case3.p, case4.p, case5.p, case6.p, case7.p and cas8.p). All the cases (Case 1 to Case 8) have a problem dimension of 54 continuous variables.

Each of them has the following format

[ F ] = case1(X);
Input: population (or solution, denoted by X) and its
Output: objective function (F) values of the population members.

The file ProblemDetails.p can be used to determine the lower and upper bounds along with the function handle for each of the cases.

The format is [lb, ub, fobj] = ProblemDetails(n);

Input: n is an integer from 1 to 8.
Output: (i) the lower bound (lb),
(ii) the upper bound (ub), and
(iii) function handle (fobj).

The file Script.m shows how to use these files along with an optimization algorithm (SanitizedTLBO).

Note:
(i) The square distance penalty comes in while handling domain hole constraint, which is the minimum between squares of Xj and (Xj-lj). Here Xj refers to the jth dimension of solution and lj refers to minimum non-zero production level.

(ii) Case 1 - 4 have the same problem structure but employ different data; Case 5 - 8 has same set of data as compared to Case 1 - 4, but do not employ a certain feature (flexible) of the problem.

(iii) The objective function files are capable of determining the objective function values of multiple solutions (i.e., if required, the entire population can be sent to the objective function file).

Reference:
(i) Chauhan, S., S., and Kotecha P. (2016) Single level production planning in petrochemical industries using Moth-flame optimization,IEEE Region 10 Conference (TENCON), Singapore, https://doi.org/10.1109/TENCON.2016.7848003.

(ii) Chauhan, S., S., and Kotecha P. (2018), Single-Level Production Planning in Petrochemical Industries using Novel Computational Intelligence Algorithms,Metaheuristic Optimization Methods: Algorithms and Engineering Applications, Springer.

### Cite As

SKS Labs (2024). Optimal production planning with single-level (square distance penalty approach) (https://github.com/SKSLAB/Single-level-optimal-production-planning-square-distance-penalty-approach), GitHub. Retrieved .

##### MATLAB Release Compatibility
Created with R2015a
Compatible with any release
##### Platform Compatibility
Windows macOS Linux
##### Categories
Find more on Problem-Based Optimization Setup in Help Center and MATLAB Answers

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!