Kernel PCA

Kernel PCA analysis with Kernel ridge regression & SVM regression
1K Downloads
Updated 26 May 2017

View License

Refer to 6.2.1 KPCA, Kernel Methods for Pattern Analysis, John Shawe-Taylor University of Southampton, Nello Cristianini University of California at Davis
Refer to 6.2.2 Kernel Ridge Regression, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Nello Cristianini and John Shawe-Taylor

Kernel PCA:
Kernel PCA is the application of PCA in a kernel-defined feature space making use of the dual representation.
http://pca.narod.ru/scholkopf_kernel.pdf

Reference: (for SVR) https://in.mathworks.com/matlabcentral/fileexchange/63060-support-vector-regression Reference: (for Ridge regression)https://in.mathworks.com/matlabcentral/fileexchange/63122-kernel-ridge-regression

Cite As

Bhartendu (2024). Kernel PCA (https://www.mathworks.com/matlabcentral/fileexchange/63130-kernel-pca), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2016a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.0