SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction
Single particle reconstruction methods based on the maximum-likelihood principle are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of servers. To address this problem, we have developed a new algorithm called SubspaceEM for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude, and the new algorithm produces similar quality reconstructions compared to the traditional maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy images and the structure projections, greatly reducing the number of image transformations and comparisons that are computed.
The files include an implementation of the SubspaceEM algorithm. The main script is subspaceEM.m. In addition, a small dataset for testing is included. Please view the readme PDF for further details.
Cite As
Nicha Dvornek (2024). SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction (https://www.mathworks.com/matlabcentral/fileexchange/50091-subspaceem-a-fast-maximum-a-posteriori-algorithm-for-cryo-em-single-particle-reconstruction), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.