Generate Normally Distributed Latin Hyper Cube samples
N Points in an K dimensional Latin hypercube are to be selected. Each of the M coordinate dimensions is discretized to the values 1 through N. The points are to be chosen in such a way that no two points have any coordinate value in common. This is a standard Latin hypercube requirement, and there are many solutions.
This algorithm differs in that it tries to pick a solution which has the property that the points are "spread out" as evenly as possible. It does this by mapping the solution elements through the normal Gaussian cumulative distribution function
Example :
X = Generate_LHS('n', 100, 'k' , 2, 'plot_flag',1,'Normal_dist_flag',1,'hist_flag',1);
References:
M. Cavazzuti, Optimization Methods: From Theory to Design,
Springer- Verlag Berlin Heidelberg 2013
Inspired by:
http://www.mathworks.com/matlabcentral/fileexchange/48927-lhsdesigncon
Cite As
Chandramouli Gnanasambandham (2025). Generate Normally Distributed Latin Hyper Cube samples (https://www.mathworks.com/matlabcentral/fileexchange/49675-generate-normally-distributed-latin-hyper-cube-samples), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |