Automatic Solution and Log Linearisation of DSGE Models
------------------------------------------------------------
PURPOSE: Performs log-linearisation.
------------------------------------------------------------
SYNTAX: result = LogLin( VarEndoNames, VarExoNames, Parameters, Equations, SolveMode, EvalMode, EvalString, Digits );
------------------------------------------------------------
EXAMPLE: result = LogLin( { 'R', 'A' }, { 'EPSILON' }, { 'beta', 'rho' }, { 'beta * R * A / A(+1) = 1', 'A = A(-1) ^ rho * exp( EPSILON )' }, 2, 2 );
------------------------------------------------------------
OUTPUT: result: a cell array of log-linearised equations, with __d appended to variable names that are deviations from steady state.
------------------------------------------------------------
INPUT: VarEndoNames: a cell array of endogenous variable names
% VarExoNames: a cell array of exogenous variable names
% Parameters: a cell array of parameter names
% Equations: a cell array of equations, in Dynare notation
% SolveMode: specifies how the steady state is found
% SolveMode = 0 ---> the steady state is not found, instead __s is appended to the variable names
% SolveMode = 1 ---> the steady state is found analytically
% SolveMode = 2 ---> the steady state is found analytically, allowing all algebraic manipulations
% SolveMode = 3 ---> the steady state is found analytically, assuming real values
% SolveMode = 4 ---> the steady state is found numerically
% EvalMode: specifies any processing of the found equations
% EvalMode = 0 ---> no additional processing
% EvalMode = 1 ---> simplification
% EvalMode = 2 ---> simplification, allowing all algebraic manipulations
% EvalMode = 3 ---> numeric evaluation, to Digits precision
% EvalString: string of comma delimited equations, useful for specifying parameters or your own computed steady state values (e.g. 'beta=0.99,rho=1/2', or 'A=1')
Digits: (optional) the number of digits of accuracy for numerical compuations
------------------------------------------------------------
Copyright © 2011 Tom Holden ( http://www.tholden.org/ )
------------------------------------------------------------
Cite As
Tom Holden (2026). Automatic Solution and Log Linearisation of DSGE Models (https://nl.mathworks.com/matlabcentral/fileexchange/31693-automatic-solution-and-log-linearisation-of-dsge-models), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
