Parameter Estimation for SIR model using Particle Swarm Optimization.

9 views (last 30 days)
Hullo Matlab community. I am stack with Parameter Estimation of SIR (Susceptible-Infected-Recovered) model using Particle Swarm Optimization(PSO) method. I need to estimate two parameters, beta and delta. I am trying to modify a program to suit my needs. The program has 3 file i.e. ofun (objective function), sir (ode model) and pso (script file with PSO code and data). I don’t know how to modify the objective function(ofun) so that the code can run past line 42 of pso script and estimate the parameters. Below are the original and my modified files for parameter estimation. Please help, I will be grateful. Thank you.
%Sir model
function dx = sir(t, x)
global beta delta;
dx = [0; 0; 0];
dx(1) = -beta * x(1) * x(2);
dx(2) = beta * x(1) * x(2) - delta * x(2);
dx(3) = delta * x(2);
end
%objective function ofun
function f=ofun(x,data)
% for i = 1:length(data(:,1))
% [t, y] = ode15s('sir', x(i), [ 500 2 0 ]);
% end
[t, y] = ode15s('sir', [1 77], [ 500 2 0 ]);
yvalue = interp1(t, y(:,2), data(:,1));
SSE = sum((yvalue - data(:,2)).^2);
f=SSE;
%pso script
tic
clc
clear all
%parameter estimation of SIR model using PSO
%% Input data
tdata= [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;...
26;27;28;29;30;31;32;33;34;35;36;37;38;39;40;41;42;43;44;45;46;47;48;...
49;50;51;52;53;54;55;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;...
72;73;74;75;76;77];
ydata=[19;40;38;34;39;43;58;89;89;106;133;129;119;139;400;441;415;392;450;600;...
832;812;513;825;700;460;493;852;998;1117;1131;832;1043;800;1087;784;...
780;838;760;515;374;553;382;458;382;347;245;231;496;434;267;320;318;200;...
138;270;202;168;155;191;104;236;202;184;121;121;99;104;76;87;66;127;144;131;23;103;45];
data = [tdata;ydata]; %*****%
%*****%
%%
LB=[0 0 0 ]; %lower bounds of variables %*****%
UB=[1 10 10]; %upper bounds of variables %*****%
% pso parameters values
m=3; % number of variables(parameters???) %*****%
n=100; % population size
wmax=0.9; % inertia weight
wmin=0.4; % inertia weight
c1=2; % acceleration factor
c2=2; % acceleration factor
% pso main program----------------------------------------------------start
maxite=500; % set maximum number of iteration %*****%
maxrun=10; % set maximum number of runs need to be
for run=1:maxrun
run
% pso initialization----------------------------------------------start
for i=1:n
for j=1:m
x0(i,j)=round(LB(j)+rand()*(UB(j)-LB(j)));
end
end
x=x0; % initial population
v=0.1*x0; % initial velocity
for i=1:n
f0(i,1)=ofun(x0(i,:),data) %*****%
end
[fmin0,index0]=min(f0);
pbest=x0; % initial pbest
gbest=x0(index0,:); % initial gbest
% pso initialization------------------------------------------------end
% pso algorithm---------------------------------------------------start
ite=1;
tolerance=1;
while ite<=maxite && tolerance>10^-12
w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight
% pso velocity updates
for i=1:n
for j=1:m
v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))...
+c2*rand()*(gbest(1,j)-x(i,j));
end
end
% pso position update
for i=1:n
for j=1:m
x(i,j)=x(i,j)+v(i,j);
end
end
% handling boundary violations
for i=1:n
for j=1:m
if x(i,j)<LB(j)
x(i,j)=LB(j);
elseif x(i,j)>UB(j)
x(i,j)=UB(j);
end
end
end
% evaluating fitness
for i=1:n
f(i,1)=ofun(x(i,:),data); %*****%
end
% updating pbest and fitness
for i=1:n
if f(i,1)<f0(i,1)
pbest(i,:)=x(i,:);
f0(i,1)=f(i,1);
end
end
[fmin,index]=min(f0); % finding out the best particle
ffmin(ite,run)=fmin; % storing best fitness
ffite(run)=ite; % storing iteration count
% updating gbest and best fitness
if fmin<fmin0
gbest=pbest(index,:);
fmin0=fmin;
end
% calculating tolerance
if ite>100;
tolerance=abs(ffmin(ite-100,run)-fmin0);
end
% displaying iterative results
if ite==1
disp(sprintf('Iteration Best particle Objective fun'));
end
disp(sprintf('%8g %8g %8.4f',ite,index,fmin0));
ite=ite+1;
end
% pso algorithm-----------------------------------------------------end
gbest;
fvalue=ofun(gbest,data); %*****%
%fvalue=10*(gbest(1)-1)^2+20*(gbest(2)-2)^2+30*(gbest(3)-3)^2;
fff(run)=fvalue;
rgbest(run,:)=gbest;
disp(sprintf('--------------------------------------'));
end
% pso main program------------------------------------------------------end
disp(sprintf('\n'));
disp(sprintf('*********************************************************'));
disp(sprintf('Final Results-----------------------------'));
[bestfun,bestrun]=min(fff)
best_variables=rgbest(bestrun,:)
disp(sprintf('*********************************************************'));
toc
% PSO convergence characteristic
plot(ffmin(1:ffite(bestrun),bestrun),'-k');
xlabel('Iteration');
ylabel('Fitness function value');
title('PSO convergence characteristic')

Answers (0)

Tags

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!