Error plotting fzero function - "Operands to the || and && operators must be convertible to logical scalar values"
1 view (last 30 days)
Show older comments
Good Day!
I am trying to plot the solution of an equation using fzero function but getting the error - "Operands to the || and && operators must be convertible to logical scalar values". Can anyone please help me out.
The code is
clc;
clear all;
format short;
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=1.4;
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= input('Enter the length of diverging section in mm: )' );
Distance_from_throat=linspace(1,Diverging_Length,50);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G-1).*M.^2)/(G+1)).^((G+1)/(G-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local = fzero(problem); % Solve for supersonic M
plot(Distance_from_throat,M_Local)
The error is:
Operands to the || and && operators must be convertible to logical scalar values.
Error in fzero (line 421)
while fb ~= 0 && a ~= b
Error in PlottingAreaMachRelation (line 23)
M_Local = fzero(problem); % Solve for supersonic M
0 Comments
Accepted Answer
DGM
on 7 Apr 2021
Edited: DGM
on 7 Apr 2021
You've set Distance_from_throat to a vector. As far as I know, fzero() handles scalars only. You can always find all the solutions with a simple loop.
clc; clf
clear all;
format short;
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=1.4;
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= 5;%input('Enter the length of diverging section in mm: )' );
DFT=linspace(1,Diverging_Length,50);
M_Local=zeros([1 numel(DFT)]);
for d=1:numel(DFT)
Distance_from_throat=DFT(d);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G-1).*M.^2)/(G+1)).^((G+1)/(G-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local(d) = fzero(problem); % Solve for supersonic M
end
plot(DFT,M_Local)
2 Comments
DGM
on 9 Apr 2021
The simple way would be to add another loop. If we arrange the y-series as rows in the output matrix, we can plot them all at once.
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=[1.2 1.4 1.6];
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= 5;%input('Enter the length of diverging section in mm: )' );
DFT=linspace(1,Diverging_Length,10);
M_Local=zeros([numel(G) numel(DFT)]);
for g=1:numel(G)
for d=1:numel(DFT)
Distance_from_throat=DFT(d);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G(g)-1).*M.^2)/(G(g)+1)).^((G(g)+1)/(G(g)-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local(g,d) = fzero(problem); % Solve for supersonic M
end
end
h=plot(DFT,M_Local); grid on
aa=num2cell(G);
tagfun=@(x) sprintf('G = %2.2f',x);
legend(h,cellfun(tagfun,aa,'UniformOutput',false),'location','northwest')
More Answers (0)
See Also
Categories
Find more on Specifying Target for Graphics Output in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!