Error plotting fzero function - "Operands to the || and && operators must be convertible to logical scalar values"

1 view (last 30 days)
Good Day!
I am trying to plot the solution of an equation using fzero function but getting the error - "Operands to the || and && operators must be convertible to logical scalar values". Can anyone please help me out.
The code is
clc;
clear all;
format short;
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=1.4;
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= input('Enter the length of diverging section in mm: )' );
Distance_from_throat=linspace(1,Diverging_Length,50);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G-1).*M.^2)/(G+1)).^((G+1)/(G-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local = fzero(problem); % Solve for supersonic M
plot(Distance_from_throat,M_Local)
The error is:
Operands to the || and && operators must be convertible to logical scalar values.
Error in fzero (line 421)
while fb ~= 0 && a ~= b
Error in PlottingAreaMachRelation (line 23)
M_Local = fzero(problem); % Solve for supersonic M

Accepted Answer

DGM
DGM on 7 Apr 2021
Edited: DGM on 7 Apr 2021
You've set Distance_from_throat to a vector. As far as I know, fzero() handles scalars only. You can always find all the solutions with a simple loop.
clc; clf
clear all;
format short;
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=1.4;
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= 5;%input('Enter the length of diverging section in mm: )' );
DFT=linspace(1,Diverging_Length,50);
M_Local=zeros([1 numel(DFT)]);
for d=1:numel(DFT)
Distance_from_throat=DFT(d);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G-1).*M.^2)/(G+1)).^((G+1)/(G-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local(d) = fzero(problem); % Solve for supersonic M
end
plot(DFT,M_Local)
  2 Comments
Saumya Nagar 17BME0447
Saumya Nagar 17BME0447 on 9 Apr 2021
Thanks a lot for the answer. It worked!
I have another question, here I now need to put three different numerical values of G and plot the result on a single plot. Is there an easy way to do it by putting a loop, if yes, can you please let me know how should I write it. Thanks in advance!
DGM
DGM on 9 Apr 2021
The simple way would be to add another loop. If we arrange the y-series as rows in the output matrix, we can plot them all at once.
Throat_Diameter=2.8;
Exit_Diameter=5.76;
G=[1.2 1.4 1.6];
Throat_Area=3.14159265.*(10.^(-6)).*((Throat_Diameter).^2)/4;
Exit_Area_inMeter=3.14159265.*(10.^(-6)).*((Exit_Diameter).^2)/4;
Diverging_Length= 5;%input('Enter the length of diverging section in mm: )' );
DFT=linspace(1,Diverging_Length,10);
M_Local=zeros([numel(G) numel(DFT)]);
for g=1:numel(G)
for d=1:numel(DFT)
Distance_from_throat=DFT(d);
Section_Diameter=Throat_Diameter+((Exit_Diameter-Throat_Diameter)*Distance_from_throat)/Diverging_Length;
Section_Area=3.14159265.*(10.^(-6)).*((Section_Diameter).^2)/4;
ARatio=Section_Area/Throat_Area;
problem.objective = @(M) (1/M.^2).*(((2+(G(g)-1).*M.^2)/(G(g)+1)).^((G(g)+1)/(G(g)-1)))-ARatio.^2; % Objective function
problem.solver = 'fzero'; % Find the zero
problem.options = optimset(@fzero); % Default options
% Solve supersonic root
problem.x0 = [1+1e-6 50]; % Supersonic solver bounds
M_Local(g,d) = fzero(problem); % Solve for supersonic M
end
end
h=plot(DFT,M_Local); grid on
aa=num2cell(G);
tagfun=@(x) sprintf('G = %2.2f',x);
legend(h,cellfun(tagfun,aa,'UniformOutput',false),'location','northwest')

Sign in to comment.

More Answers (0)

Categories

Find more on Specifying Target for Graphics Output in Help Center and File Exchange

Products


Release

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!