Fit of multiple data sets with error
1 view (last 30 days)
Show older comments
Hi everybody,
i want to make a fit in Matlab of my experimental data with a known function. I have a code that is able to perform the fit of the data but it does not account for the error on my y-data. This fit is a bit particular because i want to fit three data set with the same function and thus the output fitted parameters are unique for the three cases. Each y-data set corresponds to a different temperature and my fitting function takes into account this fact.
My fitting function is this one:
where . The fitting parameters are .
Now my problem is: how can i make a fit of my data considering the experiemental error too?
Below i show the code with the data and the error associated. If possible, i want that the output parameters have their error.
Kb=8.26e-23;
m=17246;
yfcn = @(b,x) exp(-(x(:,2).*3.*Kb.*x(:,1)/m).^2) .* (1-2*b(1).*b(2).*(1 - sin(x(:,2).*b(3))./(x(:,2).*b(3))));
x=[0.5215 0.7756 1.2679 1.4701 1.6702 1.8680 2.0633 2.2693 2.4584 2.6442 2.8264 3.0046 3.0890 3.2611 3.4287 3.5917 3.7497 3.9309 4.0774 4.2183 4.3535 4.4827 4.5427 4.6628];
y1=[1.0290 1.0025 1.0158 1.0068 0.9705 0.9646 0.9596 0.9499 0.9811 0.9669 0.9519 0.9573 0.8989 0.9315 0.9618 0.9260 1.0481 0.9245 0.9733 0.8830 1.0203 0.9851 0.9314 0.9204];
y1_err=[0.0637 0.0520 0.0322 0.0239 0.0291 0.0232 0.0405 0.0228 0.0347 0.0364 0.0424 0.0298 0.0531 0.0252 0.0313 0.0230 0.0428 0.0255 0.0375 0.0278 0.0602 0.0467 0.0736 0.0836];
y2=[0.9773 1.0156 0.9362 1.0103 0.9414 0.9167 0.9257 0.9225 0.9127 0.9230 0.9380 0.8899 0.8047 0.9339 0.9012 0.9079 0.9497 0.8449 0.8837 0.8250 0.8738 0.8602 0.9106 0.8656];
y2_err=[0.0616 0.0523 0.0303 0.0239 0.0284 0.0223 0.0394 0.0223 0.0329 0.0351 0.0418 0.0283 0.0493 0.0252 0.0298 0.0226 0.0398 0.0239 0.0350 0.0265 0.0541 0.0425 0.0722 0.0801];
y3=[1.0433 0.9711 0.9913 0.9902 0.9427 0.9146 0.8849 0.9010 0.8876 0.9175 0.9329 0.8639 0.6970 0.8260 0.8675 0.8568 0.8748 0.8156 0.8041 0.7679 0.8333 0.8443 0.8336 0.8344];
y3_err=[0.0638 0.0504 0.0311 0.0232 0.0280 0.0219 0.0375 0.0215 0.0317 0.0343 0.0410 0.0272 0.0445 0.0227 0.0283 0.0213 0.0369 0.0228 0.0323 0.0248 0.0512 0.0405 0.0664 0.0766];
T1=120; %temperature reffered to y1
T2=140; %temperature reffered to y2
T3=160; %temperature reffered to y3
T1v = T1*ones(size(x));
T2v = T2*ones(size(x));
T3v = T3*ones(size(x));
xm = x(:)*ones(1,3);
ym = [y1(:) y2(:), y3(:)];
Tm = [T1v(:) T2v(:) T3v(:)];
xv = xm(:);
yv = ym(:);
Tv = Tm(:);
xTm = [Tv xv];
B0 = rand(3,1); % Use Appropriate Initial Estimates
B = fminsearch(@(b) norm(yv - yfcn(b,xTm)), B0); % Estimate Parameters
figure
for k = 1:3
idx = (1:numel(x))+numel(x)*(k-1);
subplot(3,1,k)
plot(x, ym(:,k), '.')
hold on
plot(x, yfcn(B,xTm(idx,:)), '-r')
hold off
grid
ylabel('Substance [Units]')
title(sprintf('y_{%d}, T = %d', k,xTm(idx(1),1)))
ylim([min(yv) max(yv)])
end
xlabel('x')
sgtitle(sprintf('$y=e^{-(\\frac{3xK_BT}{m})^2} (1-2%.3f\\ %.3f (1-\\frac{sin(x\\ %.3f)}{x\\ %.3f}))$',B,B(3)), 'Interpreter','latex')
0 Comments
Answers (0)
See Also
Categories
Find more on Biotech and Pharmaceutical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!