Principle Component Analysis Computation

3 views (last 30 days)
Hi all I am applying Principle Component Analysis manauall. I have a Dataset let say
Data= [2.5000 2.4000
0.5000 0.7000
2.2000 2.9000
1.9000 2.2000
3.1000 3.0000
2.3000 2.7000
2.0000 1.6000
1.0000 1.1000
1.5000 1.6000
1.1000 0.9000]
when I compute directly by calling the matlab function princomp I get the PC
0.6779 0.7352
0.7352 -0.6779
But when I do manually like that
function [V newX D] = Untitled(X) X = bsxfun(@minus, X, mean(X,1)); %# zero-center C = (X'*X)./(size(X,1)-1); %'# cov(X)
[V D] = eig(C);
[D order] = sort(diag(D), 'descend'); %# sort cols high to low
V = V(:,order);
newX = X*V(:,1:end);
end
0.6779 -0.7352
0.7352 0.6779
I am getting different result just the minis difference why is it/
Thanks in Advance.

Accepted Answer

Leah
Leah on 23 Apr 2013
they are the same because the eigenvector (-.7532 0.6779) is equivalent to (.7532 -0.6779)
  3 Comments
Matt Kindig
Matt Kindig on 23 Apr 2013
They are equal because, by definition, all elements of an eigenvector can be scaled by an arbitrary constant without changing the eigenvector. This is a property of eigenvectors. If (-0.7532, 0.6779) is scaled by -1, it gives (0.7532, -0.6779).
Algorithms Analyst
Algorithms Analyst on 28 Apr 2013
If I use the princomp function in matlab using 2D image (grayscale image)
[A B C D]=princomp(img);
so can I say that this is called 2 dimensional principle component analysis?

Sign in to comment.

More Answers (0)

Categories

Find more on Operating on Diagonal Matrices in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!