Program does not show the matrix

7 views (last 30 days)
LightFury Yeji
LightFury Yeji on 27 Jan 2021
Commented: LightFury Yeji on 30 Jan 2021
This program is made to approximate the solution to the Poisson equation. I have no errors with the equations, but it won't display the matrix and proceeds with displaying "End". Please help
a=0;
b=2;
c=0;
d=1;
m=5;
n=6;
N= 100;
TOL = 10^-4;
syms ga(y) gb(y) gc(x) gd(x) f(x,y);
f(x,y)=x*exp(y);
ga(y)=0;
gb(y)=2*exp(y);
gc(x)=x;
gd(x) =x*exp(1);
h=(b-a)/n;
k=(d-c)/m;
for i = 1:n-1
xi(i)=a+i*h;
end
for j = 1:m-1
yj(j)=c+j*k;
end
for i=1:n-1
for j=1:m-1
wij(i,j)=0;
end
end
lambda=h^2/k^2;
mu=2*(1+lambda);
l=1;
while l <= N
z=(-(h^2)*f(xi(1),yj(m-1))+ga(yj(m-1))+lambda*gd(xi(1))+lambda*wij(1,m-2)+wij(2,m-1))/mu;
NORM=abs(z-wij(1,m-1));
wij(1,m-1)=z;
for i=2:n-2
z = (-h^2*f(xi(i),yj(m-1))+lambda*gd(xi(i))+wij(i-1,m-1)+wij(i+1,m-1)+lambda*wij(i,m-2))/mu;
if abs(wij(i,m-1)-z)>NORM
NORM = abs(wij(i,m-1)-z);
end
wij(i,m-1) = z;
end
z=(-h^2*f(xi(n-1),yj(m-1))+gb(yj(m-1))+lambda*gd(xi(n-1))+wij(n-2,m-1)+lambda*wij(n-1,m-2))/mu;
if abs (wij(n-1,m-1)-z) > NORM
NORM = abs (wij(n-1,m-1)-z);
end
wij(n-1,m-1)=z;
for j=m-2:-1:2
z=(-(h^2)*f(xi(1),yj(j))+ga(yj(j))+lambda*wij(1,j+1)+lambda*wij(1,j-1)+wij(2,j))/mu;
if abs(wij(1,j)-z)>NORM
NORM = abs(wij(1,j)-z);
end
wij(i,j)=z;
for i=2:n-2
z=(-(h^2)*f(xi(i),yj(j))+wij(i-1,j)+lambda*wij(i,j+1)+wij(i+1,j)+lambda*wij(i,j-1))/mu;
if abs (wij(i,j)-z)>NORM
NORM=abs(wij(i,j)-z);
end
wij(i,j)=z;
end
z=(-h^2*f(xi(n-1),yj(j))+gb(yj(j))+wij(n-2,j)+lambda*wij(n-1,j+1)+lambda*wij(n-1,j-1))/mu;
if abs(wij(n-1,j)-z)>NORM
NORM=abs(wij(n-1,j)-z);
end
wij(n-1,j)=z;
end
z = (-h^2*f(xi(1),yj(1))+ga(yj(1))+lambda*gc(xi(1))+lambda*wij(1,2)+wij(2,1))/mu;
if abs(wij(1,1)-z) > NORM
NORM = abs(wij(1,1)-z);
end
wij(1,1) = z;
for i = 2:n-2
z = (-h^2*f(xi(i),yj(1))+lambda*gc(xi(i))+wij(i-1,1)+lambda*wij(i,2)+wij(i+1,1))/mu;
if abs(wij(i,1)-z)>NORM
NORM = abs(wij(i,1)-z);
end
wij(i,1) = z;
end
z=(-h^2*f(xi(n-1),yj(1))+gb(yj(1))+lambda*gc(xi(n-1))+wij(n-2,1)+lambda*wij(n-1,2))/mu;
if abs (wij(n-1,1)-z) > NORM
NORM= abs(wij(n-1,1)-z) ;
end
wij(n-1,1)=z;
if NORM<= TOL
for i=1:n-1
for j=1:m-1
MATRIX(i)=[xi(i) yj(j) wij(i,j)];
end
end
display(MATRIX)
end
l=l+1;
end
display("End")
  2 Comments
Rik
Rik on 29 Jan 2021
I restored the edit from Google cache.
@LightFury Yeji it is very rude to edit away major parts of your question after receiving an answer. Please don't do it again.
LightFury Yeji
LightFury Yeji on 30 Jan 2021
Hi! Sorry for that, I did it because the answer is not correct and I thought it would confuse others. I would not do it again.

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 27 Jan 2021
a=0;
b=2;
c=0;
d=1;
m=5;
n=6;
N= 100;
TOL = 10^-4;
syms ga(y) gb(y) gc(x) gd(x) f(x,y);
f(x,y)=x*exp(y);
ga(y)=0;
gb(y)=2*exp(y);
gc(x)=x;
gd(x) =x*exp(1);
h=(b-a)/n;
k=(d-c)/m;
for i = 1:n-1
xi(i)=a+i*h;
end
for j = 1:m-1
yj(j)=c+j*k;
end
for i=1:n-1
for j=1:m-1
wij(i,j)=0;
end
end
lambda=h^2/k^2;
mu=2*(1+lambda);
l=1;
found = 0;
while l <= N
if found > 0
fprintf('solution was already found at iteration #%d, why did we start iteration %#d\n', found, l);
end
z=(-(h^2)*f(xi(1),yj(m-1))+ga(yj(m-1))+lambda*gd(xi(1))+lambda*wij(1,m-2)+wij(2,m-1))/mu;
NORM=abs(z-wij(1,m-1));
wij(1,m-1)=z;
for i=2:n-2
z = (-h^2*f(xi(i),yj(m-1))+lambda*gd(xi(i))+wij(i-1,m-1)+wij(i+1,m-1)+lambda*wij(i,m-2))/mu;
if abs(wij(i,m-1)-z)>NORM
NORM = abs(wij(i,m-1)-z);
end
wij(i,m-1) = z;
end
z=(-h^2*f(xi(n-1),yj(m-1))+gb(yj(m-1))+lambda*gd(xi(n-1))+wij(n-2,m-1)+lambda*wij(n-1,m-2))/mu;
if abs (wij(n-1,m-1)-z) > NORM
NORM = abs (wij(n-1,m-1)-z);
end
wij(n-1,m-1)=z;
for j=m-2:-1:2
z=(-(h^2)*f(xi(1),yj(j))+ga(yj(j))+lambda*wij(1,j+1)+lambda*wij(1,j-1)+wij(2,j))/mu;
if abs(wij(1,j)-z)>NORM
NORM = abs(wij(1,j)-z);
end
wij(i,j)=z;
for i=2:n-2
z=(-(h^2)*f(xi(i),yj(j))+wij(i-1,j)+lambda*wij(i,j+1)+wij(i+1,j)+lambda*wij(i,j-1))/mu;
if abs (wij(i,j)-z)>NORM
NORM=abs(wij(i,j)-z);
end
wij(i,j)=z;
end
z=(-h^2*f(xi(n-1),yj(j))+gb(yj(j))+wij(n-2,j)+lambda*wij(n-1,j+1)+lambda*wij(n-1,j-1))/mu;
if abs(wij(n-1,j)-z)>NORM
NORM=abs(wij(n-1,j)-z);
end
wij(n-1,j)=z;
end
z = (-h^2*f(xi(1),yj(1))+ga(yj(1))+lambda*gc(xi(1))+lambda*wij(1,2)+wij(2,1))/mu;
if abs(wij(1,1)-z) > NORM
NORM = abs(wij(1,1)-z);
end
wij(1,1) = z;
for i = 2:n-2
z = (-h^2*f(xi(i),yj(1))+lambda*gc(xi(i))+wij(i-1,1)+lambda*wij(i,2)+wij(i+1,1))/mu;
if abs(wij(i,1)-z)>NORM
NORM = abs(wij(i,1)-z);
end
wij(i,1) = z;
end
z=(-h^2*f(xi(n-1),yj(1))+gb(yj(1))+lambda*gc(xi(n-1))+wij(n-2,1)+lambda*wij(n-1,2))/mu;
if abs (wij(n-1,1)-z) > NORM
NORM= abs(wij(n-1,1)-z) ;
end
wij(n-1,1)=z;
if NORM<= TOL
for i=1:n-1
for j=1:m-1
MATRIX(i)=[xi(i) yj(j) wij(i,j)];
end
end
display(MATRIX)
found = l;
end
l=l+1;
end
display("End")
"End"
if found == 0
fprintf('Solution was never found, ran out of iterations\n');
else
fprintf('Solution was found at iteration #%d\n', found);
end
Solution was never found, ran out of iterations
  1 Comment
LightFury Yeji
LightFury Yeji on 30 Jan 2021
I'm sorry, this program has an expected output -- solution should be found.

Sign in to comment.

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!