Robot Kicker (Warning: Imaginary parts of complex X and/or Y arguments ignored)
1 view (last 30 days)
Show older comments
I am simulating a kick for a robot and figure(3) is causing me some hassle. The warning "Imaginary parts of complex X and/or Y arguments ignored" keeps arising.
Is there a way I can stop this from happening and get the kick simulation working properly?
%%
clear all %Clears the Workspace of the Command Window clf %Clears all the previously opened Figures
format Longg %Best of fixed or floating point format with 15 digits for double and 7 digits for single.
BSplineRes = 5000; %Resolution parameter of the B-Spline Step = 1 : BSplineRes; %Used to access all the elements of the first row of BSplineRes Lambda = Step/BSplineRes; %Creating a variable used for constructing the Bezier Curve
% -------------------------------- % % The Lengths of the Robot's Leg % % -------------------------------- %
L1 = 75; %The length of what would be the robot's femur L2 = 75; %The length of what would be the robot's tibia L3 = 32; %The length of what would be the robot's ankle L4 = 54; %The length of what would be the robot's foot
% -------------------------------- % % Forward Kinematics for Stage 1 % % -------------------------------- %
Theta1S1 = 3*pi/4; %The angle between the pelvis and femur (135 degrees) Theta2S1 = pi/2; %The angle between the femur and the tibia (90 degrees) Theta3S1 = pi/4; %The angle between the ankle and the heel (45 degrees) Theta4S1 = -pi/2; %The angle between the tibia and the toes (90 degrees)
X1S1 = L1 * cos(Theta1S1); %These forward kinematics have been Y1S1 = L1 * sin(Theta1S1); %taken directly from my logbook and X2S1 = X1S1 + L2*cos(Theta1S1 + Theta2S1); %been modified for the first stage Y2S1 = Y1S1 + L2*sin(Theta1S1 + Theta2S1); X3S1 = X2S1 + L3*cos(Theta1S1 + Theta2S1 + Theta3S1); Y3S1 = Y2S1 + L3*sin(Theta1S1 + Theta2S1 + Theta3S1); X4S1 = X3S1 + L4*cos(Theta1S1 + Theta2S1 + Theta3S1 + Theta4S1); Y4S1 = Y3S1 + L4*sin(Theta1S1 + Theta2S1 + Theta3S1 + Theta4S1);
% -------------------------------- % % Forward Kinematics for Stage 2 % % -------------------------------- %
Theta1S2 = pi/2; %The angle between the pelvis and femur (90 degrees) Theta2S2 = pi/4; %The angle between the femur and the tibia (45 degrees) Theta3S2 = 3*pi/16; %The angle between the ankle and the heel (33.75 degrees) Theta4S2 = -pi/2; %The angle between the tibia and the toes (90 degrees)
X1S2 = L1 * cos(Theta1S2); %These forward kinematics have been Y1S2 = L1 * sin(Theta1S2); %taken directly from my logbook and X2S2 = X1S2 + L2*cos(Theta1S2 + Theta2S2); %been modified for the second stage Y2S2 = Y1S2 + L2*sin(Theta1S2 + Theta2S2); X3S2 = X2S2 + L3*cos(Theta1S2 + Theta2S2 + Theta3S2); Y3S2 = Y2S2 + L3*sin(Theta1S2 + Theta2S2 + Theta3S2); X4S2 = X3S2 + L4*cos(Theta1S2 + Theta2S2 + Theta3S2 + Theta4S2); Y4S2 = Y3S2 + L4*sin(Theta1S2 + Theta2S2 + Theta3S2 + Theta4S2);
% -------------------------------- % % Forward Kinematics for Stage 3 % % -------------------------------- %
Theta1S3 = pi/4; %The angle between the pelvis and femur (45 degrees) Theta2S3 = 0; %The angle between the femur and the tibia (0 degrees) Theta3S3 = pi/8; %The angle between the ankle and the heel (22.5 degrees) Theta4S3 = -pi/2; %The angle between the tibia and the toes (90 degrees)
X1S3 = L1 * cos(Theta1S3); %These forward kinematics have been Y1S3 = L1 * sin(Theta1S3); %taken directly from my logbook and X2S3 = X1S3 + L2*cos(Theta1S3 + Theta2S3); %been modified for the final stage Y2S3 = Y1S3 + L2*sin(Theta1S3 + Theta2S3); X3S3 = X2S3 + L3*cos(Theta1S3 + Theta2S3 + Theta3S3); Y3S3 = Y2S3 + L3*sin(Theta1S3 + Theta2S3 + Theta3S3); X4S3 = X3S3 + L4*cos(Theta1S3 + Theta2S3 + Theta3S3 + Theta4S3); Y4S3 = Y3S3 + L4*sin(Theta1S3 + Theta2S3 + Theta3S3 + Theta4S3);
% -------------------------------- % % Plotting the Leg's Swing % % -------------------------------- %
figure(1)
hold all set(gca,'Color',[0.87 0.92 0.98]); %Set the figure's background to light blue title('Phases of the Robot Swing', 'FontSize', 15, 'FontWeight', 'Bold'); %Sets the figure's title xlabel('X-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the X-axis ylabel('Y-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the Y-axis axis([-200 200 -75 225]); %Setting the maximum and minimum values for both axis
S1Plot1 = (plot(0, 0, 'x')); %Plots an 'x' where the top of the leg is at Stage 1 S1Plot2 = (plot(X1S1, Y1S1, 'x')); %Plots an 'x' for the knee at Stage 1 S1Plot3 = (plot(X2S1, Y2S1, 'x')); %Plots an 'x' for the ankle at Stage 1 S1Plot4 = (plot(X3S1, Y3S1, 'x')); %Plots an 'x' for the heel at Stage 1 S1Plot5 = (plot(X4S1, Y4S1, 'x')); %Plots an 'x' for the toe at Stage 1
set(S1Plot1, 'Color', 'Red', 'LineWidth', 2) %Sets the origin (for all stages) to red set(S1Plot2, 'Color', 'Red', 'LineWidth', 2) %Sets the 'x' on the knee to red set(S1Plot3, 'Color', 'Red', 'LineWidth', 2) %Sets the 'x' on the ankle to red set(S1Plot4, 'Color', 'Red', 'LineWidth', 2) %Sets the 'x' on the heel to red set(S1Plot5, 'Color', 'Red', 'LineWidth', 2) %Sets the 'x' on the toe to red
Line1 = (line([0 X1S1 X2S1 X3S1 X4S1], [0 Y1S1 Y2S1 Y3S1 Y4S1])); %All these points are connected set(Line1, 'Color', 'Black', 'LineWidth', 1.5); %(in black) to form Stage 1
S2Plot1 = (plot(X1S2, Y1S2, 'x')); %Plots an 'x' for the knee at Stage 2 S2Plot2 = (plot(X2S2, Y2S2, 'x')); %Plots an 'x' for the ankle at Stage 2 S2Plot3 = (plot(X3S2, Y3S2, 'x')); %Plots an 'x' for the heel at Stage 2 S2Plot4 = (plot(X4S2, Y4S2, 'x')); %Plots an 'x' for the toe at Stage 2
set(S2Plot1, 'Color', 'Blue', 'LineWidth', 2) %Sets the 'x' on the knee to blue set(S2Plot2, 'Color', 'Blue', 'LineWidth', 2) %Sets the 'x' on the ankle to blue set(S2Plot3, 'Color', 'Blue', 'LineWidth', 2) %Sets the 'x' on the heel to blue set(S2Plot4, 'Color', 'Blue', 'LineWidth', 2) %Sets the 'x' on the toe to blue
Line2 = (line([0 X1S2 X2S2 X3S2 X4S2], [0 Y1S2 Y2S2 Y3S2 Y4S2])); %All these points are connected set(Line2, 'Color', 'Black', 'LineWidth', 1.5); %(in black) to form Stage 2
S3Plot1 = (plot(X1S3, Y1S3, 'x')); %Plots an 'x' for the knee at Stage 3 S3Plot2 = (plot(X2S3, Y2S3, 'x')); %Plots an 'x' for the ankle at Stage 3 S3Plot3 = (plot(X3S3, Y3S3, 'x')); %Plots an 'x' for the heel at Stage 3 S3Plot4 = (plot(X4S3, Y4S3, 'x')); %Plots an 'x' for the toe at Stage 3
set(S3Plot1, 'Color', 'Magenta', 'LineWidth', 2) %Sets the 'x' on the knee to magneta set(S3Plot2, 'Color', 'Magenta', 'LineWidth', 2) %Sets the 'x' on the ankle to magneta set(S3Plot3, 'Color', 'Magenta', 'LineWidth', 2) %Sets the 'x' on the heel to magneta set(S3Plot4, 'Color', 'Magenta', 'LineWidth', 2) %Sets the 'x' on the toe to magneta
Line3 = (line([0 X1S3 X2S3 X3S3 X4S3], [0 Y1S3 Y2S3 Y3S3 Y4S3])); %All these points are connected set(Line3, 'Color', 'Black', 'LineWidth', 1.5); %(in black) to form Stage 3
% -------------------------------- % % Forming the Bezier Curve % % -------------------------------- %
HeelPosS1 = [X3S1 Y3S1 0]; %Co-ordinates of the heel at Stage 1 HeelPosS2 = [X3S2-80 Y3S2+80 0]; %Co-ordinates modified to pass through the heel at Stage 2 HeelPosS3 = [X3S3 Y3S3 0]; %Co-ordinates of the heel at Stage 3 Swing = [1 1 0; -2 2 0; 1 -2 1]; %Coordinates for the Bezier Matrix TrajPoints = ones(4, BSplineRes); %The nodes which indicate the Bezier Curve
%Bezier1 = ([1 Lambda(Order1) Lambda(Order1)^2]); %Bezier2 = (([HeelPosS1' HeelPosS2' HeelPosS3']')'-HeelPosS2');
for Order1 = 1 : BSplineRes
%Bezier = ((Bezier1)*Swing*(Bezier2));
Bezier = ([1 Lambda(Order1) Lambda(Order1)^2]*Swing*[HeelPosS1' HeelPosS2' HeelPosS3']')'-HeelPosS2';
TrajPoints(:, Order1) = [Bezier; 0];
end
Index = zeros(1, BSplineRes); %e Order1 = 2; Order2 = 2; Order3 = 1; MaxEdge = 5; %e %OrderCalc1 = ((TrajPoints(1, Order2)) - (TrajPoints(1, Order1))^2); %e %OrderCalc2 = ((TrajPoints(2, Order2)) - (TrajPoints(2, Order1))^2); %e
while (Order2 < BSplineRes) && (Order3 < BSplineRes) %&& is used for scalar value
while ((abs(Index(Order3)) < MaxEdge) && (Order2 < BSplineRes)) %Abs ensures an absolute value
Order2 = Order2 + 1; %Order2 is then incremented by 1
%Index(Order3) = sqrt(OrderCalc1 + OrderCalc2); %e
Index(Order3) = sqrt((TrajPoints(1, Order2) - TrajPoints(1, Order1))^2 + (TrajPoints(2, Order2) - TrajPoints(2, Order1))^2);
TrajPoints(: ,Order3) = TrajPoints(:, Order1); %e
end
Order3 = Order3 + 1; %e
Order1 = Order2; %e
end
BSplineRes = Order3 - 1; %e Step = Step(1 : BSplineRes); %e InitAngle = 0; %e StepAngle = (((pi)/4.5)/BSplineRes); %e
% -------------------------------- % % Plot the Bezier Curve of the Leg % % -------------------------------- %
for Order1 = 1 : BSplineRes
BezColor1 = (plot(TrajPoints(1, Order1), TrajPoints(2, Order1), 'o')); %This plots several 'o's denoting
set(BezColor1, 'Color', 'Green', 'LineWidth', 1.2); %Creates a smooth looking, green curve
InitAngle = ((pi) - (Order1 - 1)*StepAngle); %the Bezier curve named 'Swing'
TrajPoints(4, Order1) = InitAngle; %e
end
LegendDesc1 = ([S1Plot1, S2Plot1, S3Plot1, BezColor1]); %Creates images for the legend legend(LegendDesc1,'Stage 1','Stage 2','Stage 3','Bezier Swing'); %Names the images of the legend
TrajPoints = TrajPoints(:, 1 : BSplineRes); set(gca,'YDir','reverse') %The figures are inverted in the Y-Direction hold off
% -------------------------------- % % Inverse Kinematics to find Theta % % -------------------------------- %
Delta = (pi/2) + TrajPoints(4, :); %Constant 'Delta' is used for Inverse Kinematic calculations (for Theta3) Xterm = TrajPoints(1, :) - L3*cos(Delta); %Constant 'Xterm' is used for Inverse Kinematic calculations (for Theta3) Yterm = TrajPoints(2, :) - L3*sin(Delta); %Constant 'Yterm' is used for Inverse Kinematic calculations (for Theta3) Rterm = sqrt((Xterm.^2) + (Yterm.^2)); %Constant 'Rterm' is used for Inverse Kinematic calculations (for Theta3) Alpha = atan2(Yterm, Xterm); %Constant 'Alpha' is used for Inverse Kinematic calculations (for Theta1) Gamma = acos(-((L2^2 - Rterm.^2 - L1^2) ./ (2*L1*Rterm))); Beta = acos(-((Rterm.^2 - L1^2 - L2^2) ./ (2*L1*L2)));
Theta1 = (Alpha - Gamma); %Pre-defined mathematical equations Theta2 = (pi - Beta); %for angles of Theta. These have Theta3 = (Delta - Theta1 - Theta2); %previously calculated in logbook
%Constm = (((L2^2) - (Rterm.^2) - (L1^1))/(2*Rterm*L1)); %Constant 'm' derived in logbook %Constk = (((Rterm.^2) - (L1^2) - (L2^2))/(2*L1*L2)); %Constant 'k' derived in logbook
%Theta1 = (acos(Constm) + Alpha); %Pre-defined mathematical equations %Theta2 = (acos(Constk) + pi); %for angles of Theta. These have %Theta3 = Delta - Theta1 - Theta2; %previously calculated in logbook.
% -------------------------------- % % Representing Theta Angles in Deg % % -------------------------------- %
figure(2)
hold all set(gca,'Color',[0.87 0.92 0.98]); %Set the figure's background to light blue title('Angular Conversions (Deg)', 'FontSize', 15, 'FontWeight', 'Bold'); %Sets the figure's title xlabel('X-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the X-axis ylabel('Y-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the Y-axis axis([0 80 -20 250]); %Minimum and Maximum values have been modified
Theta1Conv = (convang(Theta1, 'rad', 'deg')); %Converts values of Theta1 from radians to degrees Theta2Conv = (convang(Theta2, 'rad', 'deg')); %Converts values of Theta2 from radians to degrees Theta3Conv = (convang(Theta3, 'rad', 'deg')); %Converts values of Theta3 from radians to degrees TrajPointsConv = (convang(TrajPoints(4, :), 'rad', 'deg')); %Converts TrajPoints from radians to degrees
Theta1Ang = (plot(Step, (Theta1Conv), '-')); %Shows the angular conversion of Theta1 in a linear pattern Theta2Ang = (plot(Step, (Theta2Conv), '-')); %Shows the angular conversion of Theta2 in a linear pattern Theta3Ang = (plot(Step, (Theta3Conv), '-')); %Shows the angular conversion of Theta3 in a linear pattern TrajPointsAng = (plot(Step, (TrajPointsConv), '-')); %Shows the angular conversion of TrajPoints in a linear pattern
set(Theta1Ang, 'Color', 'Red', 'LineWidth', 1.2) %Makes the Theta1 line red set(Theta2Ang, 'Color', 'Blue', 'LineWidth', 1.2) %Makes the Theta2 line blue set(Theta3Ang, 'Color', 'Cyan', 'LineWidth', 1.2) %Makes the Theta3 line cyan set(TrajPointsAng, 'Color', 'Green', 'LineWidth', 1.2) %Makes the TrajPoints line green
LegendDesc2 = ([Theta1Ang, Theta2Ang, Theta3Ang, TrajPointsAng]); %Creates images for the legend legend(LegendDesc2,'Theta 1','Theta 2','Theta 3','Bezier Swing'); %Names the images of the legend
% -------------------------------- % % Coordinates of the Robot's Leg % % -------------------------------- %
X1 = L1 * cos(Theta1); %(X1, Y1) are the knee coordinates Y1 = L1 * sin(Theta1); %(X2, Y2) are the ankle coordinates X2 = X1 + L2*cos(Theta1 + Theta2); %(X3, Y3) are the heel coordinates Y2 = Y1 + L2*sin(Theta1 + Theta2); %(X4, Y4) are the toe coordinates X3 = X2 + L3*cos(Theta1 + Theta2 + Theta3); Y3 = Y2 + L3*sin(Theta1 + Theta2 + Theta3); X4 = X3 + L4*cos(Theta1 + Theta2 + Theta3 + Theta4S1); Y4 = Y3 + L4*sin(Theta1 + Theta2 + Theta3 + Theta4S1);
% -------------------------------- % % Stepping through the Kick Motion % % -------------------------------- %
figure(3)
hold all set(gca,'Color',[0.87 0.92 0.98]); %Set the figure's background to light blue title('More Phases of the Swing', 'FontSize', 15, 'FontWeight', 'Bold'); %Sets the figure's title xlabel('X-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the X-axis ylabel('Y-Length (mm)', 'FontSize', 11, 'FontWeight', 'Bold'); %Naming the Y-axis axis([-200 200 -75 225]); %Minimum and Maximum values have been modified
State = 1; if State == 1
InitLegMotion1 = (plot(0, 0, 'x')); %e
InitLegMotion2 = (plot(X1(1), Y1(1), 'x')); %e
InitLegMotion3 = (plot(X2(1), Y2(1), 'x')); %e
InitLegMotion4 = (plot(X3(1), Y3(1), 'x')); %e
InitLegMotion5 = (plot(X4(1), Y4(1), 'x')); %e
set(InitLegMotion1, 'Color', 'Red', 'LineWidth', 2) %e
set(InitLegMotion2, 'Color', 'Red', 'LineWidth', 2) %e
set(InitLegMotion3, 'Color', 'Red', 'LineWidth', 2) %e
set(InitLegMotion4, 'Color', 'Red', 'LineWidth', 2) %e
set(InitLegMotion5, 'Color', 'Red', 'LineWidth', 2) %e
Line4 = (line([0 X1(1) X2(1) X3(1) X4(1)],... %e [0 Y1(1) Y2(1) Y3(1) Y4(1)])); %e set(Line4, 'Color', 'Black', 'LineWidth', 1.2); %e
for Order1 = 1 : BSplineRes %e
hold all
MidLegMotion1 = (plot(0, 0, 'x')); %e
MidLegMotion2 = (plot(X1(Order1), Y1(Order1), 'x')); %e
MidLegMotion3 = (plot(X2(Order1), Y2(Order1), 'x')); %e
MidLegMotion4 = (plot(X3(Order1), Y3(Order1), 'x')); %e
MidLegMotion5 = (plot(X4(Order1), Y4(Order1), 'x')); %e
set(MidLegMotion2, 'Color', 'Blue', 'LineWidth', 2) %e
set(MidLegMotion3, 'Color', 'Blue', 'LineWidth', 2) %e
set(MidLegMotion4, 'Color', 'Blue', 'LineWidth', 2) %e
set(MidLegMotion5, 'Color', 'Blue', 'LineWidth', 2) %e
Line5 = (line([0 X1(Order1) X2(Order1) X3(Order1) X4(Order1)],... %e
[0 Y1(Order1) Y2(Order1) Y3(Order1) Y4(Order1)])); %e
set(Line5, 'Color', 'Black', 'LineWidth', 1.2); %e
end
else
hold all
StopLegMotion1 = (plot(0, 0, 'x')); %e
StopLegMotion2 = (plot(X1, Y1, 'x')); %e
StopLegMotion3 = (plot(X2, Y2, 'x')); %e
StopLegMotion4 = (plot(X3, Y3, 'x')); %e
StopLegMotion5 = (plot(X4, Y4, 'x')); %e
set(StopLegMotion2, 'Color', 'Magenta', 'LineWidth', 2) %e
set(StopLegMotion3, 'Color', 'Magenta', 'LineWidth', 2) %e
set(StopLegMotion4, 'Color', 'Magenta', 'LineWidth', 2) %e
set(StopLegMotion5, 'Color', 'Magenta', 'LineWidth', 2) %e
Line6 = (line([0 X1 X2 X3 X4], [0 Y1 Y2 Y3 Y4])); %e
set(Line6, 'Color', 'Magenta', 'LineWidth', 1.2); %e
end
BezColor2 = (plot(TrajPoints(1, :), TrajPoints(2, :), 'o')); %This plots several 'o's denoting the Bezier Swing set(BezColor2, 'Color', 'Green', 'LineWidth', 1.2); %e set(gca, 'YDir', 'reverse') %The figures are inverted in the Y-Direction%The figures are inverted in the Y-Direction
0 Comments
Answers (1)
See Also
Categories
Find more on Genetic Algorithm in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!