How can i unnormalize the forecasted system load outputs in Neural Networks in Matlab
4 views (last 30 days)
Show older comments
I normalised and unnormalised training and test data as mentioned below and hwo can i unnormalise the forecased output to the scale of test data ?
% normalising training and test data
[pn,ps] = mapminmax(input_train);
[tn,ts] = mapminmax(target_train);
[pn1,ps1] = mapminmax(input_test);
[tn1,ts1] = mapminmax(target_test);
forecastedoutput=net(pn1);
an = sim(net,pn);
a = mapminmax('reverse',an,ts);
0 Comments
Answers (1)
Srivardhan Gadila
on 31 Oct 2020
It is recommended to normalize the entire dataset first and then split it for training and testing so that the normalization would be consistent.
Or use the same normalization settings which are used for training data to normalize the testing data:
% normalising training data
[pn,ps] = mapminmax(input_train);
[tn,ts] = mapminmax(target_train);
% normalize test data with settings used for normalizing the training data
pn1 = mapminmax('apply',input_test,ps);
tn1 = mapminmax('apply',target_test,ts);
an = sim(net,pn1);
a = mapminmax('reverse',an,ts);
0 Comments
See Also
Categories
Find more on Pattern Recognition and Classification in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!