BTCS for 1D heat problem

6 views (last 30 days)
Nima Vali
Nima Vali on 8 Oct 2020
Edited: Nima Vali on 8 Oct 2020
Hello all
I am working on the probelem of solving the heat equation with 3 methods of exact,FTCS, and BTCS. The fisrt two methods work fine. But the result for BTCS (solving uisng thomas algorithm) is not correct. Can anyone help with troubleshooting this?
clear;clc;;close all;
%setting up the parameters
Nmax=500; %max of Fourier modes for fine case
U0=2;
tf=10;
dt=0.5;
dx=0.1;
Kappa=5*10^-3;
x = (-3:dx:3);
n=length (x);
alpha=Kappa*dt./dx.^2;
% problem initialization
for j=1:n
if (1<x(j)) || (x(j)<-1)
Tinit(j)=0;
else Tinit(j)=U0;
end
end
%********************************************************************************
%Calculating F exact
for k=-3:dx:3
fexact=0.5*U0*(erf((1-x)/(2*sqrt(Kappa*tf)))-erf(-(x+1)/(2*sqrt(Kappa*tf))));
end
%************************************************************************************
%Calculating T_ftcs
T0=Tinit;
for l=1:dt:tf
for i=2:n-1
T_ftcs(i) = T0(i) + alpha*(T0(i+1)-2*T0(i)+T0(i-1));
T_ftcs(1)=T0(1) + alpha*(T0(2)-2*T0(1)+0);
T_ftcs(n) = T0(n) + alpha*(0-2*T0(n)+T0(n-1));
end
T0=T_ftcs;
end
%%****************************************************************************
% calculating f_BTCS
% Creat matrix A
e= ones(n-2,1);
Ac =spdiags([-alpha*e (1+2*alpha)*e -alpha*e],-1:1,n-2,n-2);
%initials
T_btcs=Tinit;
%start loop in time
for s=1:dt:tf
b =T_btcs(2:n-1);
b(1)= b(1)+alpha*T_btcs(1);
b(end)= b(end)+alpha*T_btcs(end);
p=length(b);
%solving linear system with Thomas algorithm
for k = 1:p-1
i = k +1;
l(i,k)=Ac(i,k)/Ac(k,k);
for j = k :k+1
Ac(i,j) = Ac(i,j)- l(i,k)*Ac(k,j);
end
b(i) = b(i)-l(i,k)*b(k);
end
%apply backward substitution
for k = p:-1:1
x(k)=b(k);
for j=k+1: min(p,k+1)
x(k)=x(k)-Ac(k,j)*x(j);
end
x(k)=x(k)/Ac(k,k);
end
T_btcs(k)=x(k);
end
figure ('units', 'normalized','position',[0.55 0.1 .45 .45])
plot(x,fexact,'o',x,T_ftcs,'-d',x,T_btcs,'--')
set(gca,'fontsize',26)
ylim([0,3])
xlabel ('x')

Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!