I need to get the mean square error (MSE) for 1000 realization, how should i code it in a simpler way? Any help is appreciated.
How to run this code for 1000 times?
1 view (last 30 days)
Show older comments
%For C1
lambda1 = [60.21, 41.58, 9.11, 8.71, 3.83, 3.74, 18.06]
r1 = poissrnd(lambda1)
%For C2
lambda2 = [41.58, 60.21, 8.71, 9.11, 3.74, 3.83, 18.06]
r2 = poissrnd(lambda2)
%Designed training sequences x1 and x2
x1 = [1,1,1,0,0,0,0,1,0,1,0,1,1,0,0,1] ;
x2 = [1,1,1,0,1,0,0,0,1,1,1,0,0,0,0,1] ;
%X[3] to X[16]
X3 = [1 1 1 1 1 1 1]' ;
X4 = [0 0 1 1 1 1 1]' ;
X5 = [0 1 0 0 1 1 1]' ;
X6 = [0 0 0 1 0 0 1]' ;
X7 = [0 0 0 0 0 1 1]' ;
X8 = [1 0 0 0 0 0 1]' ;
X9 = [0 1 1 0 0 0 1]' ;
X10 = [1 1 0 1 1 0 1]' ;
X11 = [0 1 1 1 0 1 1]' ;
X12 = [1 0 0 1 1 1 1]' ;
X13 = [1 0 1 0 0 1 1]' ;
X14 = [0 0 1 0 1 0 1]' ;
X15 = [0 0 0 0 1 0 1]' ;
X16 = [1 1 0 0 0 0 1]' ;
%X,a 7x14 matrix
X = [X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16];
%C, a 7x2 matrix
C = [r1; r2]' ;
%Y, a 14x2 matrix
Y = X'*C ;
%Yd = Poiss(Y) (at equation (8))
Yd = poissrnd(Y)
%y1, a 14x1 matrix ; y2, a 14x1 matrix
y1 = Y(:,1)
y2 = Y(:,2)
%Least Square Estimate of C
Cls = (inv(X*X'))*(X*Yd)
% To set to zero all the negative entries of C
Cls1 = max(Cls,0)
%Mean square error of LS C and C
MSE = mean((C - Cls1).^2)
4 Comments
Accepted Answer
KSSV
on 27 May 2020
N = 1000 ;
MSE = zeros(N,2) ;
for i = 1:N
%For C1
lambda1 = [60.21, 41.58, 9.11, 8.71, 3.83, 3.74, 18.06] ;
r1 = poissrnd(lambda1) ;
%For C2
lambda2 = [41.58, 60.21, 8.71, 9.11, 3.74, 3.83, 18.06] ;
r2 = poissrnd(lambda2) ;
%Designed training sequences x1 and x2
x1 = [1,1,1,0,0,0,0,1,0,1,0,1,1,0,0,1] ;
x2 = [1,1,1,0,1,0,0,0,1,1,1,0,0,0,0,1] ;
%X[3] to X[16]
X3 = [1 1 1 1 1 1 1]' ;
X4 = [0 0 1 1 1 1 1]' ;
X5 = [0 1 0 0 1 1 1]' ;
X6 = [0 0 0 1 0 0 1]' ;
X7 = [0 0 0 0 0 1 1]' ;
X8 = [1 0 0 0 0 0 1]' ;
X9 = [0 1 1 0 0 0 1]' ;
X10 = [1 1 0 1 1 0 1]' ;
X11 = [0 1 1 1 0 1 1]' ;
X12 = [1 0 0 1 1 1 1]' ;
X13 = [1 0 1 0 0 1 1]' ;
X14 = [0 0 1 0 1 0 1]' ;
X15 = [0 0 0 0 1 0 1]' ;
X16 = [1 1 0 0 0 0 1]' ;
%X,a 7x14 matrix
X = [X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14,X15,X16];
%C, a 7x2 matrix
C = [r1; r2]' ;
%Y, a 14x2 matrix
Y = X'*C ;
%Yd = Poiss(Y) (at equation (8))
Yd = poissrnd(Y) ;
%y1, a 14x1 matrix ; y2, a 14x1 matrix
y1 = Y(:,1) ;
y2 = Y(:,2) ;
%Least Square Estimate of C
Cls = (inv(X*X'))*(X*Yd) ;
% To set to zero all the negative entries of C
Cls1 = max(Cls,0) ;
%Mean square error of LS C and C
MSE(i,:) = mean((C - Cls1).^2) ;
end
11 Comments
More Answers (0)
See Also
Categories
Find more on Configure Simulation Conditions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!