how to solve this non-linear equations?
    12 views (last 30 days)
  
       Show older comments
    
    M.Rameswari Sudha
 on 4 Jan 2020
  
    
    
    
    
    Commented: M.Rameswari Sudha
 on 18 Dec 2020
            I couldnot find the value of v and w.  let me know what is the mistake in the following code.
function solveeqs()
guess=[200 110];
[result,fval,exit,output]= fsolve(@eqns,guess);
result
fval
eqns(guess)
output
end
function fcns=eqns(z)
v=z(1);
w=z(2);
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=1000;k=0.02;b=7;a =0.01;T =107;
%w=k*(1-exp(-a*chi));
M=k*a;
fcns(1)=(1/T)*[p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h)];
fcns(2)=(1/T)*[-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1];
end
3 Comments
  John D'Errico
      
      
 on 4 Jan 2020
				Please don't use an answer to make a comment.
"how do u get ?  I didnot get the answer.  let me know what is the mistake made by me"
Accepted Answer
  John D'Errico
      
      
 on 4 Jan 2020
        
      Edited: John D'Errico
      
      
 on 4 Jan 2020
  
      It is pretty easy to find at least one solution. vpasolve will do so, and my guess is, fsolve will do the same.
syms v w
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=1000;k=0.02;b=7;a =0.01;T =107;
M=k*a;
fcns(1)=(1/T)*[p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k)*v)-(d*v/T))*c-d*((v/T)-1)*r-(d/(w-k))*(1-exp(-(w-k)*v)*h)];
fcns(2)=(1/T)*[-(d*c*v*exp(-(w-k)*v)*M/(w-k))+(((d*c*(1-exp(-(w-k)*v))+h*d*v*(1+exp(-(w-k)*v)))*M)/(w-k)^2)+((2*h*d*(exp(-(w-k)*v)-1)*M)/(w-k)^3)-1];
sol = vpasolve(fcns,v,w)
sol = 
  struct with fields:
    v: [1×1 sym]
    w: [1×1 sym]
sol.v
ans =
98.167804480477247473056536377199
sol.w
ans =
0.070053725915927256484131799766249
Nonlinear solvers find a solution based on the starting guess. Use different start guesses, and you will find other solutions. vpasolve uses a default starting guess at (0,0) as I recall.
So where do the solutions lie? This is most easily done using a contour plot.
f1 = @(v,w) (1/T)*[p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k).*v)-(d*v/T))*c-d*((v/T)-1).*r-(d./(w-k)).*(1-exp(-(w-k).*v)*h)];
f2 = @(v,w) (1/T)*[-(d*c*v.*exp(-(w-k).*v).*M./(w-k))+(((d*c*(1-exp(-(w-k).*v))+h*d*v.*(1+exp(-(w-k).*v)))*M)./(w-k).^2)+((2*h*d*(exp(-(w-k).*v)-1)*M)./(w-k).^3)-1];
H1 = fcontour(f1,[-200,200,-.25 .25]);
H1.LineColor = 'b';
H1.LevelList = 0;
hold on
H2 = fcontour(f2,[-200,200,-.25 .25]);
H2.LineColor = 'r';
H2.LevelList = 0;
grid on
xlabel 'v'
ylabel 'w'
Intersections of the red and blue lines indicate all solutions. There appear to be 6 solutions. Start in the vicinity of each solution, and you will get one of them.

The shape of the curves suggests there may be more solutions for large negative values of v, but I doubt it, as that would force w to change sign as we follow along that curve. More likely, the red curve will approach the asymptote at w==0 from below.
So, what did you do incorrectly? If fsolve failed to find at least one solution, then you should show what you did, and what error was the result.
I would conjecture the problem lies in your starting guess, which is terrible.
guess=[200 110];
which has a ridiculous initial value for w. 110 is so far out in the weeds, that it makes no sense in context of your equations.
p=30;d=1;lamda=0.8;c=10;r=35;h=0.05;chi=1000;k=0.02;b=7;a =0.01;T =107;
f1 = @(v,w) (1/T)*[p*d-((lamda*p*d*v)/T)-(d*exp(-(w-k).*v)-(d*v/T))*c-d*((v/T)-1).*r-(d./(w-k)).*(1-exp(-(w-k).*v)*h)];
f2 = @(v,w) (1/T)*[-(d*c*v.*exp(-(w-k).*v).*M./(w-k))+(((d*c*(1-exp(-(w-k).*v))+h*d*v.*(1+exp(-(w-k).*v)))*M)./(w-k).^2)+((2*h*d*(exp(-(w-k).*v)-1)*M)./(w-k).^3)-1];
solve(@(vw) [f1(vw(1),vw(2));f2(vw(1),vw(2))],[200,110])
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
ans =
       141.92       88.652
So why do I suggest that w makes no sense? w always seems to be paired with k, which is 0.02 = 1/50.
pretty(fcns(1))
   /    /      1 \ \
exp| -v | w - -- | |
   \    \     50 / /             /    /      1 \ \
-------------------- - 1   10 exp| -v | w - -- | |
         20                      \    \     50 / /    49 v    65
------------------------ - ----------------------- - ----- + ---
     /      1 \                      107             11449   107
     | w - -- | 107
     \     50 /
So w should be something on the order of k.
fsolve(@(vw) [f1(vw(1),vw(2));f2(vw(1),vw(2))],[100,.05])
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
ans =
       98.168     0.070054
This system of equations is a bit tricky, as fsolve can return garbage solutions if you are not careful with the start guess. That is often true for problems that contain exponentials.
More Answers (1)
  M.Rameswari Sudha
 on 11 Dec 2020
        
      Edited: Walter Roberson
      
      
 on 11 Dec 2020
  
      
      2 Comments
  Walter Roberson
      
      
 on 11 Dec 2020
				You should start a new Question for this.
When you do, you should add more documentation as to what you are trying to solve.
for i=1:length(R1)
M1=(S*(r*Cp-(1-2*D/P)*r*Cv))/((A+R1(i))*(r*Cv*(1-D/P)+g*D*th0));
M(j)=M1;
j=j+1;
end
Why are you not just using
for i=1:length(R1)
M1=(S*(r*Cp-(1-2*D/P)*r*Cv))/((A+R1(i))*(r*Cv*(1-D/P)+g*D*th0));
M(i)=M1;
end
with no j ? 
See Also
Categories
				Find more on Systems of Nonlinear Equations in Help Center and File Exchange
			
	Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!