How to find max and min of fuction of 2 independent variables?
7 views (last 30 days)
Show older comments
Faris Hajdarpasic
on 20 Feb 2019
Commented: Walter Roberson
on 21 Feb 2019
My question is how can I find minimum and maximum of this function, and then tag them with 'o' in function graph?
This is my code so far:
function funkcija(intervalpox,intervalpoy,korak,crtanje)
x=0:korak:intervalpox;
y=0:korak:intervalpoy;
[X,Y] = meshgrid(x,y);
Z = (sin(sqrt(X.^2 + Y.^2)) ./ (sqrt(X.^2 + Y.^2)));
mesh(X,Y,Z)
grid on
xlabel('.x.')
ylabel('.y.')
zlabel('.z.')
title('mesh')
8 Comments
Walter Roberson
on 21 Feb 2019
[~, location_of_max] = max(Z(:));
[~, location_of_min] = min(Z(:));
x_at_max = X(location_of_max);
y_at_max = Y(location_of_max);
z_at_max = Z(location_of_max);
x_at_min = X(location_of_min);
y_at_min = Y(location_of_min);
z_at_min = Z(location_of_min)
plot3(x_at_max, y_at_max, z_at_max, 'go', x_at_min, y_at_min, z_at_min,'r+');
Accepted Answer
Asad Mirza
on 20 Feb 2019
MaxVals = find(imregionalmax(Z));
plot3(X(MaxVals),Y(MaxVals),Z(MaxVals),'ro','MarkerSize',30)
Now this will find you your local maximums but to find the minimums you could just flip Z upside down and then run imregionalmax again.
Zupsidedown=-Z;
MinVals = find(imregionalmax(Zupsidedown));
plot3(X(MinVals),Y(MinVals),Z(MinVals),'go','MarkerSize',30)
This will allow you to find the local max and mins across the entire surface.
clear;clc;close all
korak=.1;
intervalpox=10;
intervalpoy=10;
x=korak:korak:intervalpox;
y=korak:korak:intervalpoy;
[X,Y] = meshgrid(x,y);
Z = (sin(sqrt(X.^2 + Y.^2)) ./ (sqrt(X.^2 + Y.^2)));
Zupsidedown=-Z;
MaxVals = find(imregionalmax(Z));
MinVals = find(imregionalmax(Zupsidedown));
plot3(X(MaxVals),Y(MaxVals),Z(MaxVals),'r.','MarkerSize',30)
hold on
plot3(X(MinVals),Y(MinVals),Z(MinVals),'g.','MarkerSize',30)
mesh(X,Y,Z)
grid on
xlabel('.x.')
ylabel('.y.')
zlabel('.z.')
title('mesh')
6 Comments
Asad Mirza
on 21 Feb 2019
That's just using max() and min() on the resulting vector output of imregionalmax:
clear;clc;close all
korak=.1;
intervalpox=10;
intervalpoy=10;
x=korak:korak:intervalpox;
y=korak:korak:intervalpoy;
[X,Y] = meshgrid(x,y);
Z = (sin(sqrt(X.^2 + Y.^2)) ./ (sqrt(X.^2 + Y.^2)));
Zupsidedown=-Z;
MaxVals = find(imregionalmax(Z));
[~, ZGlobalMaxInd]=max(Z(MaxVals));
MinVals = find(imregionalmax(Zupsidedown));
[~, ZGlobalMinInd]=min(Zupsidedown(MinVals));
% plot3(X(MaxVals),Y(MaxVals),Z(MaxVals),'r.','MarkerSize',30)
% hold on
% plot3(X(MinVals),Y(MinVals),Z(MinVals),'g.','MarkerSize',30)
plot3(X(ZGlobalMaxInd),Y(ZGlobalMaxInd),Z(ZGlobalMaxInd),'r.','MarkerSize',30)
hold on
plot3(X(ZGlobalMinInd),Y(ZGlobalMinInd),Z(ZGlobalMinInd),'g.','MarkerSize',30)
mesh(X,Y,Z)
grid on
xlabel('.x.')
ylabel('.y.')
zlabel('.z.')
title('mesh')
view(45,12)
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!